在大鼠脊髓损伤模型中,被动自行车训练可刺激骺端骨形成并恢复骨完整性,而与运动恢复无关。

IF 3.3 3区 医学 Q1 PHYSIOLOGY Journal of applied physiology Pub Date : 2024-09-01 Epub Date: 2024-08-01 DOI:10.1152/japplphysiol.00299.2024
Jayachandra R Kura, Bosco Cheung, Christine F Conover, Russell D Wnek, Michael C Reynolds, Kinley H Buckley, Benjamin M Soto, Dana M Otzel, J Ignacio Aguirre, Joshua F Yarrow
{"title":"在大鼠脊髓损伤模型中,被动自行车训练可刺激骺端骨形成并恢复骨完整性,而与运动恢复无关。","authors":"Jayachandra R Kura, Bosco Cheung, Christine F Conover, Russell D Wnek, Michael C Reynolds, Kinley H Buckley, Benjamin M Soto, Dana M Otzel, J Ignacio Aguirre, Joshua F Yarrow","doi":"10.1152/japplphysiol.00299.2024","DOIUrl":null,"url":null,"abstract":"<p><p>It is unknown whether activity-based physical therapy (ABPT) modalities that mobilize the paralyzed limbs improve bone integrity at the highly fracture-prone epiphyseal regions of the distal femur and proximal tibia following severe spinal cord injury (SCI). In this study, 4-mo-old skeletally mature littermate-matched male Sprague-Dawley rats received either SHAM surgery or severe contusion SCI. At 1 wk postsurgery, SCI rats were stratified to undergo no-ABPT, two 20-min bouts/day of quadrupedal bodyweight-supported treadmill training (qBWSTT), or hindlimb passive isokinetic bicycle (cycle) training, 5 days/wk for another 3 wk. We assessed locomotor recovery and plantar flexor muscle mass, tracked cancellous and cortical bone microstructure at the distal femoral and proximal tibial epiphyses using in vivo microcomputed tomography (microCT), and evaluated bone turnover at the tibial epiphysis with histomorphometry. All SCI animals displayed persistent hindlimb paralysis and pervasive muscle atrophy. Over the initial 2 wk, which included 1 wk of no exercise and 1 wk of ABPT acclimation, a similar magnitude of bone loss developed in all SCI groups. Thereafter, cancellous bone loss and cortical bone decrements increased in the SCI no-ABPT group. qBWSTT attenuated this trabecular bone loss but did not prevent the ongoing cortical bone deficits. In comparison, twice-daily cycle training increased the number and activity of osteoblasts versus other SCI groups and restored all bone microstructural parameters to SHAM levels at both epiphyseal sites. These data indicate that a novel passive isokinetic cycle training regimen reversed cancellous and cortical bone deterioration at key epiphyseal sites after experimental SCI via osteoblast-mediated bone anabolic mechanisms, independent of locomotor recovery or increased muscle mass.<b>NEW & NOTEWORTHY</b> This study was the first to assess how quadrupedal bodyweight-supported treadmill training or passive isokinetic bicycle (cycle) training impacts bone recovery at the distal femoral and proximal tibial epiphyses in a rat model of severe contusion spinal cord injury. Our results demonstrate that passive isokinetic cycle training completely restored cancellous and cortical bone microstructural parameters at these sites via osteoblast-mediated bone anabolic actions, independent of locomotor recovery or increased plantar flexor muscle mass.</p>","PeriodicalId":15160,"journal":{"name":"Journal of applied physiology","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Passive bicycle training stimulates epiphyseal bone formation and restores bone integrity independent of locomotor recovery in a rat spinal cord injury model.\",\"authors\":\"Jayachandra R Kura, Bosco Cheung, Christine F Conover, Russell D Wnek, Michael C Reynolds, Kinley H Buckley, Benjamin M Soto, Dana M Otzel, J Ignacio Aguirre, Joshua F Yarrow\",\"doi\":\"10.1152/japplphysiol.00299.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>It is unknown whether activity-based physical therapy (ABPT) modalities that mobilize the paralyzed limbs improve bone integrity at the highly fracture-prone epiphyseal regions of the distal femur and proximal tibia following severe spinal cord injury (SCI). In this study, 4-mo-old skeletally mature littermate-matched male Sprague-Dawley rats received either SHAM surgery or severe contusion SCI. At 1 wk postsurgery, SCI rats were stratified to undergo no-ABPT, two 20-min bouts/day of quadrupedal bodyweight-supported treadmill training (qBWSTT), or hindlimb passive isokinetic bicycle (cycle) training, 5 days/wk for another 3 wk. We assessed locomotor recovery and plantar flexor muscle mass, tracked cancellous and cortical bone microstructure at the distal femoral and proximal tibial epiphyses using in vivo microcomputed tomography (microCT), and evaluated bone turnover at the tibial epiphysis with histomorphometry. All SCI animals displayed persistent hindlimb paralysis and pervasive muscle atrophy. Over the initial 2 wk, which included 1 wk of no exercise and 1 wk of ABPT acclimation, a similar magnitude of bone loss developed in all SCI groups. Thereafter, cancellous bone loss and cortical bone decrements increased in the SCI no-ABPT group. qBWSTT attenuated this trabecular bone loss but did not prevent the ongoing cortical bone deficits. In comparison, twice-daily cycle training increased the number and activity of osteoblasts versus other SCI groups and restored all bone microstructural parameters to SHAM levels at both epiphyseal sites. These data indicate that a novel passive isokinetic cycle training regimen reversed cancellous and cortical bone deterioration at key epiphyseal sites after experimental SCI via osteoblast-mediated bone anabolic mechanisms, independent of locomotor recovery or increased muscle mass.<b>NEW & NOTEWORTHY</b> This study was the first to assess how quadrupedal bodyweight-supported treadmill training or passive isokinetic bicycle (cycle) training impacts bone recovery at the distal femoral and proximal tibial epiphyses in a rat model of severe contusion spinal cord injury. Our results demonstrate that passive isokinetic cycle training completely restored cancellous and cortical bone microstructural parameters at these sites via osteoblast-mediated bone anabolic actions, independent of locomotor recovery or increased plantar flexor muscle mass.</p>\",\"PeriodicalId\":15160,\"journal\":{\"name\":\"Journal of applied physiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of applied physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/japplphysiol.00299.2024\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of applied physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/japplphysiol.00299.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

严重脊髓损伤(SCI)后股骨远端和胫骨近端骨骺区极易发生骨折,而活动型物理疗法(ABPT)能否通过活动瘫痪肢体来改善这些部位的骨完整性,目前尚不清楚。在这项研究中,四个月大的骨骼成熟的同窝匹配雄性 Sprague-Dawley 大鼠接受了 SHAM 手术或严重挫伤 SCI。手术后一周,SCI大鼠被分层,接受无ABPT训练或每天两次20分钟的四足负重跑步机训练(qBWSTT)或后肢被动异动自行车训练(Cycle),每周5天,持续3周。我们评估了运动恢复情况和跖屈肌肌肉质量,使用体内显微 CT 追踪了股骨远端和胫骨近端骺端的松质骨和皮质骨微结构,并使用组织形态测量法评估了胫骨骺端的骨转换情况。所有 SCI 动物均表现出持续的后肢瘫痪和普遍的肌肉萎缩。在最初的两周内,包括一周不运动和一周ABPT适应期,所有SCI组都出现了类似程度的骨质流失。qBWSTT 可减轻这种骨小梁流失,但不能防止持续的皮质骨缺损。相比之下,与其他 SCI 组相比,每天两次的循环训练增加了成骨细胞的数量和活性,并使两个骺板部位的所有骨微观结构参数恢复到 SHAM 水平。这些数据表明,新颖的被动等速循环训练方案通过成骨细胞介导的骨合成代谢机制逆转了实验性 SCI 后关键骺端松质骨和皮质骨的退化,而与运动恢复或肌肉质量增加无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Passive bicycle training stimulates epiphyseal bone formation and restores bone integrity independent of locomotor recovery in a rat spinal cord injury model.

It is unknown whether activity-based physical therapy (ABPT) modalities that mobilize the paralyzed limbs improve bone integrity at the highly fracture-prone epiphyseal regions of the distal femur and proximal tibia following severe spinal cord injury (SCI). In this study, 4-mo-old skeletally mature littermate-matched male Sprague-Dawley rats received either SHAM surgery or severe contusion SCI. At 1 wk postsurgery, SCI rats were stratified to undergo no-ABPT, two 20-min bouts/day of quadrupedal bodyweight-supported treadmill training (qBWSTT), or hindlimb passive isokinetic bicycle (cycle) training, 5 days/wk for another 3 wk. We assessed locomotor recovery and plantar flexor muscle mass, tracked cancellous and cortical bone microstructure at the distal femoral and proximal tibial epiphyses using in vivo microcomputed tomography (microCT), and evaluated bone turnover at the tibial epiphysis with histomorphometry. All SCI animals displayed persistent hindlimb paralysis and pervasive muscle atrophy. Over the initial 2 wk, which included 1 wk of no exercise and 1 wk of ABPT acclimation, a similar magnitude of bone loss developed in all SCI groups. Thereafter, cancellous bone loss and cortical bone decrements increased in the SCI no-ABPT group. qBWSTT attenuated this trabecular bone loss but did not prevent the ongoing cortical bone deficits. In comparison, twice-daily cycle training increased the number and activity of osteoblasts versus other SCI groups and restored all bone microstructural parameters to SHAM levels at both epiphyseal sites. These data indicate that a novel passive isokinetic cycle training regimen reversed cancellous and cortical bone deterioration at key epiphyseal sites after experimental SCI via osteoblast-mediated bone anabolic mechanisms, independent of locomotor recovery or increased muscle mass.NEW & NOTEWORTHY This study was the first to assess how quadrupedal bodyweight-supported treadmill training or passive isokinetic bicycle (cycle) training impacts bone recovery at the distal femoral and proximal tibial epiphyses in a rat model of severe contusion spinal cord injury. Our results demonstrate that passive isokinetic cycle training completely restored cancellous and cortical bone microstructural parameters at these sites via osteoblast-mediated bone anabolic actions, independent of locomotor recovery or increased plantar flexor muscle mass.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.00
自引率
9.10%
发文量
296
审稿时长
2-4 weeks
期刊介绍: The Journal of Applied Physiology publishes the highest quality original research and reviews that examine novel adaptive and integrative physiological mechanisms in humans and animals that advance the field. The journal encourages the submission of manuscripts that examine the acute and adaptive responses of various organs, tissues, cells and/or molecular pathways to environmental, physiological and/or pathophysiological stressors. As an applied physiology journal, topics of interest are not limited to a particular organ system. The journal, therefore, considers a wide array of integrative and translational research topics examining the mechanisms involved in disease processes and mitigation strategies, as well as the promotion of health and well-being throughout the lifespan. Priority is given to manuscripts that provide mechanistic insight deemed to exert an impact on the field.
期刊最新文献
Balancing innovations and ethics: the evolving role of advanced technology in sports competitions. Footwear technology, running outputs, and technical performance in soccer match-play. How technological impacts on performance have been managed in elite sport: a powerlifting example. Isn't limiting technology in sports limiting sports science? Last word on Viewpoint: Technological advances in elite sport: Should a line be drawn?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1