Kalyanmoy Deb , A. Pouyan Nejadhashemi , Gregorio Toscano , Hoda Razavi , Lewis Linker
{"title":"利用创新和转移学习优化大规模流域管理中的最佳管理做法","authors":"Kalyanmoy Deb , A. Pouyan Nejadhashemi , Gregorio Toscano , Hoda Razavi , Lewis Linker","doi":"10.1016/j.envsoft.2024.106161","DOIUrl":null,"url":null,"abstract":"<div><p>Recent research in evolutionary multi-objective optimization (EMO) highlights the concept of “Innovization”, which identifies essential patterns in high-quality, non-dominated solutions. This study introduces a novel method to pinpoint influential Best Management Practices (BMPs) in the Chesapeake Bay Watershed, optimizing the trade-off solution process. This approach, though innovative, demands considerable expertise and involves generating multiple solutions for expert analysis to detect commonly used BMPs. We devised three re-optimization strategies from these findings using an innovized BMP list, efficiently producing high-quality solutions. We also implemented transfer learning to adapt these strategies for new counties, demonstrating effectiveness in four West Virginia counties by reducing decision variables by 3% to 33% and achieving similar reductions in four additional counties. This showcases the potential of combining innovization with transfer learning to simplify complex optimization challenges, emphasizing its significant applicability in real-world settings.</p></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"180 ","pages":"Article 106161"},"PeriodicalIF":4.8000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leveraging innovization and transfer learning to optimize best management practices in large-scale watershed management\",\"authors\":\"Kalyanmoy Deb , A. Pouyan Nejadhashemi , Gregorio Toscano , Hoda Razavi , Lewis Linker\",\"doi\":\"10.1016/j.envsoft.2024.106161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recent research in evolutionary multi-objective optimization (EMO) highlights the concept of “Innovization”, which identifies essential patterns in high-quality, non-dominated solutions. This study introduces a novel method to pinpoint influential Best Management Practices (BMPs) in the Chesapeake Bay Watershed, optimizing the trade-off solution process. This approach, though innovative, demands considerable expertise and involves generating multiple solutions for expert analysis to detect commonly used BMPs. We devised three re-optimization strategies from these findings using an innovized BMP list, efficiently producing high-quality solutions. We also implemented transfer learning to adapt these strategies for new counties, demonstrating effectiveness in four West Virginia counties by reducing decision variables by 3% to 33% and achieving similar reductions in four additional counties. This showcases the potential of combining innovization with transfer learning to simplify complex optimization challenges, emphasizing its significant applicability in real-world settings.</p></div>\",\"PeriodicalId\":310,\"journal\":{\"name\":\"Environmental Modelling & Software\",\"volume\":\"180 \",\"pages\":\"Article 106161\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Modelling & Software\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364815224002226\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815224002226","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Leveraging innovization and transfer learning to optimize best management practices in large-scale watershed management
Recent research in evolutionary multi-objective optimization (EMO) highlights the concept of “Innovization”, which identifies essential patterns in high-quality, non-dominated solutions. This study introduces a novel method to pinpoint influential Best Management Practices (BMPs) in the Chesapeake Bay Watershed, optimizing the trade-off solution process. This approach, though innovative, demands considerable expertise and involves generating multiple solutions for expert analysis to detect commonly used BMPs. We devised three re-optimization strategies from these findings using an innovized BMP list, efficiently producing high-quality solutions. We also implemented transfer learning to adapt these strategies for new counties, demonstrating effectiveness in four West Virginia counties by reducing decision variables by 3% to 33% and achieving similar reductions in four additional counties. This showcases the potential of combining innovization with transfer learning to simplify complex optimization challenges, emphasizing its significant applicability in real-world settings.
期刊介绍:
Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.