{"title":"揭示硫醇保护金纳米团簇的复杂结构特征:从内部核心到外部 \"主干 \"图案和整体电荷状态","authors":"Wen Wu Xu, Endong Wang, Xiao Cheng Zeng","doi":"10.1021/accountsmr.4c00166","DOIUrl":null,"url":null,"abstract":"The revelation of numerous thiolate-protected gold nanocluster (TP-AuNCs) structures, achieved through a blend of theoretical predictions and experimental detection/validation, presents a vast amount of data for understanding the structural evolution of these nanoclusters. Typically, these clusters featured an internal gold core surrounded by external “staple” motifs SR[Au(SR)]<i><sub>x</sub></i> (<i>x</i> = 0, 1, 2, 3, ...) at various charge states. In this Account, we outline our Grand Unified Model (GUM) that elucidates the growth mechanism of the internal gold core, the bonding nature of outer “staple” motifs, and a ring model illuminating the intricate interfacial interactions between the motifs and the internal gold core, as well as a simple rule governing charge states.","PeriodicalId":72040,"journal":{"name":"Accounts of materials research","volume":"74 1","pages":""},"PeriodicalIF":14.0000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling Complex Structural Features of Thiolate-Protected Gold Nanoclusters: From Internal Core to External “Staple” Motifs and Overall Charge States\",\"authors\":\"Wen Wu Xu, Endong Wang, Xiao Cheng Zeng\",\"doi\":\"10.1021/accountsmr.4c00166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The revelation of numerous thiolate-protected gold nanocluster (TP-AuNCs) structures, achieved through a blend of theoretical predictions and experimental detection/validation, presents a vast amount of data for understanding the structural evolution of these nanoclusters. Typically, these clusters featured an internal gold core surrounded by external “staple” motifs SR[Au(SR)]<i><sub>x</sub></i> (<i>x</i> = 0, 1, 2, 3, ...) at various charge states. In this Account, we outline our Grand Unified Model (GUM) that elucidates the growth mechanism of the internal gold core, the bonding nature of outer “staple” motifs, and a ring model illuminating the intricate interfacial interactions between the motifs and the internal gold core, as well as a simple rule governing charge states.\",\"PeriodicalId\":72040,\"journal\":{\"name\":\"Accounts of materials research\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":14.0000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of materials research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/accountsmr.4c00166\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of materials research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/accountsmr.4c00166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Unveiling Complex Structural Features of Thiolate-Protected Gold Nanoclusters: From Internal Core to External “Staple” Motifs and Overall Charge States
The revelation of numerous thiolate-protected gold nanocluster (TP-AuNCs) structures, achieved through a blend of theoretical predictions and experimental detection/validation, presents a vast amount of data for understanding the structural evolution of these nanoclusters. Typically, these clusters featured an internal gold core surrounded by external “staple” motifs SR[Au(SR)]x (x = 0, 1, 2, 3, ...) at various charge states. In this Account, we outline our Grand Unified Model (GUM) that elucidates the growth mechanism of the internal gold core, the bonding nature of outer “staple” motifs, and a ring model illuminating the intricate interfacial interactions between the motifs and the internal gold core, as well as a simple rule governing charge states.