Kirsten Jung, Miriam Teuscher, Stefan Böhm, Konstans Wells, Manfred Ayasse, Markus Fischer, Wolfgang W. Weisser, Swen C. Renner, Marco Tschapka
{"title":"在草地和森林管理系统中支持鸟类多样性和生态功能需要一种综合方法","authors":"Kirsten Jung, Miriam Teuscher, Stefan Böhm, Konstans Wells, Manfred Ayasse, Markus Fischer, Wolfgang W. Weisser, Swen C. Renner, Marco Tschapka","doi":"10.3389/fenvs.2024.1401513","DOIUrl":null,"url":null,"abstract":"In modified production landscapes, biodiversity faces unprecedented pressures from human actions, resulting in significant species declines of plant and animal taxa, including birds. Understanding the underlying mechanisms responsible for such declines is essential to counteract further loss and support practitioners in conserving biodiversity and associated ecosystem function. In this study, we used standardized bird monitoring data collected over 6 years in managed forest and grassland areas across different regions in Germany, Central Europe. We combined these data with morphometric, ecological, behavioral, and acoustic trait data and detailed information on local land use management practices to understand how management decisions affect species and functional diversity, as well as ecological processes shaping local species composition. Our results reveal that the ecosystem and regional context must be considered to understand how management practices affect bird diversity aspects and composition. In forests, regional management decisions related to tree species and stand age affected bird diversity, as well as community and functional composition, and indicated environmental sorting due to ecological and behavioral requirements, biotic interactions, and morphometric constraints. In grasslands, independent of local management practices, increased intensity of land use resulted in an overall loss in bird species richness and functional diversity. Predominantly, constraints due to ecological or behavioral requirements affected bird species assemblage composition. In addition, our results indicated the importance of woody vegetation near managed grasslands and of considering environmental conditions beyond the local scale to support bird diversity and associated ecosystem functions. Our results highlighted that local management decisions can support bird diversity and maintain ecological function. However, this needs a view beyond the local scale of management units. It also demands a joint effort of biologists and land managers to integrate targeted conservation actions into regional management practices and create a network of habitats within production landscapes to protect nature, guard against biotic and functional homogenization, and prevent further degradation of ecosystems in production landscapes.","PeriodicalId":12460,"journal":{"name":"Frontiers in Environmental Science","volume":"28 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Supporting bird diversity and ecological function in managed grassland and forest systems needs an integrative approach\",\"authors\":\"Kirsten Jung, Miriam Teuscher, Stefan Böhm, Konstans Wells, Manfred Ayasse, Markus Fischer, Wolfgang W. Weisser, Swen C. Renner, Marco Tschapka\",\"doi\":\"10.3389/fenvs.2024.1401513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In modified production landscapes, biodiversity faces unprecedented pressures from human actions, resulting in significant species declines of plant and animal taxa, including birds. Understanding the underlying mechanisms responsible for such declines is essential to counteract further loss and support practitioners in conserving biodiversity and associated ecosystem function. In this study, we used standardized bird monitoring data collected over 6 years in managed forest and grassland areas across different regions in Germany, Central Europe. We combined these data with morphometric, ecological, behavioral, and acoustic trait data and detailed information on local land use management practices to understand how management decisions affect species and functional diversity, as well as ecological processes shaping local species composition. Our results reveal that the ecosystem and regional context must be considered to understand how management practices affect bird diversity aspects and composition. In forests, regional management decisions related to tree species and stand age affected bird diversity, as well as community and functional composition, and indicated environmental sorting due to ecological and behavioral requirements, biotic interactions, and morphometric constraints. In grasslands, independent of local management practices, increased intensity of land use resulted in an overall loss in bird species richness and functional diversity. Predominantly, constraints due to ecological or behavioral requirements affected bird species assemblage composition. In addition, our results indicated the importance of woody vegetation near managed grasslands and of considering environmental conditions beyond the local scale to support bird diversity and associated ecosystem functions. Our results highlighted that local management decisions can support bird diversity and maintain ecological function. However, this needs a view beyond the local scale of management units. It also demands a joint effort of biologists and land managers to integrate targeted conservation actions into regional management practices and create a network of habitats within production landscapes to protect nature, guard against biotic and functional homogenization, and prevent further degradation of ecosystems in production landscapes.\",\"PeriodicalId\":12460,\"journal\":{\"name\":\"Frontiers in Environmental Science\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Environmental Science\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3389/fenvs.2024.1401513\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Environmental Science","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3389/fenvs.2024.1401513","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Supporting bird diversity and ecological function in managed grassland and forest systems needs an integrative approach
In modified production landscapes, biodiversity faces unprecedented pressures from human actions, resulting in significant species declines of plant and animal taxa, including birds. Understanding the underlying mechanisms responsible for such declines is essential to counteract further loss and support practitioners in conserving biodiversity and associated ecosystem function. In this study, we used standardized bird monitoring data collected over 6 years in managed forest and grassland areas across different regions in Germany, Central Europe. We combined these data with morphometric, ecological, behavioral, and acoustic trait data and detailed information on local land use management practices to understand how management decisions affect species and functional diversity, as well as ecological processes shaping local species composition. Our results reveal that the ecosystem and regional context must be considered to understand how management practices affect bird diversity aspects and composition. In forests, regional management decisions related to tree species and stand age affected bird diversity, as well as community and functional composition, and indicated environmental sorting due to ecological and behavioral requirements, biotic interactions, and morphometric constraints. In grasslands, independent of local management practices, increased intensity of land use resulted in an overall loss in bird species richness and functional diversity. Predominantly, constraints due to ecological or behavioral requirements affected bird species assemblage composition. In addition, our results indicated the importance of woody vegetation near managed grasslands and of considering environmental conditions beyond the local scale to support bird diversity and associated ecosystem functions. Our results highlighted that local management decisions can support bird diversity and maintain ecological function. However, this needs a view beyond the local scale of management units. It also demands a joint effort of biologists and land managers to integrate targeted conservation actions into regional management practices and create a network of habitats within production landscapes to protect nature, guard against biotic and functional homogenization, and prevent further degradation of ecosystems in production landscapes.
期刊介绍:
Our natural world is experiencing a state of rapid change unprecedented in the presence of humans. The changes affect virtually all physical, chemical and biological systems on Earth. The interaction of these systems leads to tipping points, feedbacks and amplification of effects. In virtually all cases, the causes of environmental change can be traced to human activity through either direct interventions as a consequence of pollution, or through global warming from greenhouse case emissions. Well-formulated and internationally-relevant policies to mitigate the change, or adapt to the consequences, that will ensure our ability to thrive in the coming decades are badly needed. Without proper understanding of the processes involved, and deep understanding of the likely impacts of bad decisions or inaction, the security of food, water and energy is a risk. Left unchecked shortages of these basic commodities will lead to migration, global geopolitical tension and conflict. This represents the major challenge of our time. We are the first generation to appreciate the problem and we will be judged in future by our ability to determine and take the action necessary. Appropriate knowledge of the condition of our natural world, appreciation of the changes occurring, and predictions of how the future will develop are requisite to the definition and implementation of solutions.
Frontiers in Environmental Science publishes research at the cutting edge of knowledge of our natural world and its various intersections with society. It bridges between the identification and measurement of change, comprehension of the processes responsible, and the measures needed to reduce their impact. Its aim is to assist the formulation of policies, by offering sound scientific evidence on environmental science, that will lead to a more inhabitable and sustainable world for the generations to come.