{"title":"土壤中多芳烃的生物修复:最新进展综述","authors":"Arthur Paul Schwab","doi":"10.1007/s40726-024-00324-8","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose of Review</h3><p>Recent progress in bioremediation of soils contaminated with polyaromatic hydrocarbons (PAHs) is reviewed. Innovative techniques, traditional approaches, and combinations of technologies are examined.</p><h3>Recent Findings</h3><p>Bioremediation was heavily researched in past decades and continues to be studied with excellent advances. Phytoremediation, bioaugmentation, biostimulation, and natural attenuation remain important but are now studied in conjunction with genetic analyses, community dynamics, and extracellular enzymes and/or surfactants. Field soils contaminated with heavy matrices have lower rates of degradation (often < 25%), even for the most aggressive techniques.</p><h3>Summary</h3><p>Significant strides have been taken in improving the efficacy of bioremediation of PAH-contaminated soils and understanding the fundamental processes. Key genes, important enzymes, and optimal conditions have been identified. Research continues in the challenging and important area of degradation of PAHs in anaerobic environments. Bioremediation endures as a viable approach to decontamination of soils and a fertile area for future research.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div><p>Bioremediation is the use of living organisms (soil bacteria, fungi, macroinvertebrates) to remove contaminants from soil. In the case of PAHs, the system is complex with multiple interactions between the organisms and the environment, including human interventions such as soil bioslurries, bioaugmentation, and biostimulation.</p></div>","PeriodicalId":528,"journal":{"name":"Current Pollution Reports","volume":"10 4","pages":"710 - 721"},"PeriodicalIF":6.4000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bioremediation of Polyaromatic Hydrocarbons in Soils: A Review of Recent Progress\",\"authors\":\"Arthur Paul Schwab\",\"doi\":\"10.1007/s40726-024-00324-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Purpose of Review</h3><p>Recent progress in bioremediation of soils contaminated with polyaromatic hydrocarbons (PAHs) is reviewed. Innovative techniques, traditional approaches, and combinations of technologies are examined.</p><h3>Recent Findings</h3><p>Bioremediation was heavily researched in past decades and continues to be studied with excellent advances. Phytoremediation, bioaugmentation, biostimulation, and natural attenuation remain important but are now studied in conjunction with genetic analyses, community dynamics, and extracellular enzymes and/or surfactants. Field soils contaminated with heavy matrices have lower rates of degradation (often < 25%), even for the most aggressive techniques.</p><h3>Summary</h3><p>Significant strides have been taken in improving the efficacy of bioremediation of PAH-contaminated soils and understanding the fundamental processes. Key genes, important enzymes, and optimal conditions have been identified. Research continues in the challenging and important area of degradation of PAHs in anaerobic environments. Bioremediation endures as a viable approach to decontamination of soils and a fertile area for future research.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div><p>Bioremediation is the use of living organisms (soil bacteria, fungi, macroinvertebrates) to remove contaminants from soil. In the case of PAHs, the system is complex with multiple interactions between the organisms and the environment, including human interventions such as soil bioslurries, bioaugmentation, and biostimulation.</p></div>\",\"PeriodicalId\":528,\"journal\":{\"name\":\"Current Pollution Reports\",\"volume\":\"10 4\",\"pages\":\"710 - 721\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Pollution Reports\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40726-024-00324-8\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Pollution Reports","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s40726-024-00324-8","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Bioremediation of Polyaromatic Hydrocarbons in Soils: A Review of Recent Progress
Purpose of Review
Recent progress in bioremediation of soils contaminated with polyaromatic hydrocarbons (PAHs) is reviewed. Innovative techniques, traditional approaches, and combinations of technologies are examined.
Recent Findings
Bioremediation was heavily researched in past decades and continues to be studied with excellent advances. Phytoremediation, bioaugmentation, biostimulation, and natural attenuation remain important but are now studied in conjunction with genetic analyses, community dynamics, and extracellular enzymes and/or surfactants. Field soils contaminated with heavy matrices have lower rates of degradation (often < 25%), even for the most aggressive techniques.
Summary
Significant strides have been taken in improving the efficacy of bioremediation of PAH-contaminated soils and understanding the fundamental processes. Key genes, important enzymes, and optimal conditions have been identified. Research continues in the challenging and important area of degradation of PAHs in anaerobic environments. Bioremediation endures as a viable approach to decontamination of soils and a fertile area for future research.
Graphical Abstract
Bioremediation is the use of living organisms (soil bacteria, fungi, macroinvertebrates) to remove contaminants from soil. In the case of PAHs, the system is complex with multiple interactions between the organisms and the environment, including human interventions such as soil bioslurries, bioaugmentation, and biostimulation.
期刊介绍:
Current Pollution Reports provides in-depth review articles contributed by international experts on the most significant developments in the field of environmental pollution.By presenting clear, insightful, balanced reviews that emphasize recently published papers of major importance, the journal elucidates current and emerging approaches to identification, characterization, treatment, management of pollutants and much more.