Miguel Mena, Solmar Varela, Bertrand Berche and Ernesto Medina
{"title":"手性诱导自旋选择性的最小模型:自旋轨道耦合、隧道和退相干","authors":"Miguel Mena, Solmar Varela, Bertrand Berche and Ernesto Medina","doi":"10.1088/1742-5468/ad613b","DOIUrl":null,"url":null,"abstract":"Here we review a universal model for chirally induced spin-selectivity (CISS) as a standalone effect occurring in chiral molecules. We tie together the results of forward scattering in the gas phase to the results for photoelectrons in chiral self-assembled monolayers, and the more contemporary results in two terminal transport setups. We discuss the ingredients that are necessarily present in all experiments to date, which we identify as: (i) chirality, be it point, helical or configurational, (ii) the spin–orbit coupling as the spin active coupling of atomic origin, (iii) decoherence as a time-reversal symmetry breaking mechanism that avoids reciprocity relations in the linear regime and finally (iv) tunneling that accounts for the magnitude of the spin polarization effect. This proposal does not discard other mechanisms that can yield comparable spin effects related to interactions of the molecule to contacts or substrates that have been proposed but are less universal or apply to specific situations. Finally, we discuss recent results suggesting CISS as a molecular phenomenon in the realms of enantiomer selectivity, coherent electron transfer, and spin effects in chiroptical activity.","PeriodicalId":17207,"journal":{"name":"Journal of Statistical Mechanics: Theory and Experiment","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimal model for chirally induced spin selectivity: spin-orbit coupling, tunneling and decoherence\",\"authors\":\"Miguel Mena, Solmar Varela, Bertrand Berche and Ernesto Medina\",\"doi\":\"10.1088/1742-5468/ad613b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Here we review a universal model for chirally induced spin-selectivity (CISS) as a standalone effect occurring in chiral molecules. We tie together the results of forward scattering in the gas phase to the results for photoelectrons in chiral self-assembled monolayers, and the more contemporary results in two terminal transport setups. We discuss the ingredients that are necessarily present in all experiments to date, which we identify as: (i) chirality, be it point, helical or configurational, (ii) the spin–orbit coupling as the spin active coupling of atomic origin, (iii) decoherence as a time-reversal symmetry breaking mechanism that avoids reciprocity relations in the linear regime and finally (iv) tunneling that accounts for the magnitude of the spin polarization effect. This proposal does not discard other mechanisms that can yield comparable spin effects related to interactions of the molecule to contacts or substrates that have been proposed but are less universal or apply to specific situations. Finally, we discuss recent results suggesting CISS as a molecular phenomenon in the realms of enantiomer selectivity, coherent electron transfer, and spin effects in chiroptical activity.\",\"PeriodicalId\":17207,\"journal\":{\"name\":\"Journal of Statistical Mechanics: Theory and Experiment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Mechanics: Theory and Experiment\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1742-5468/ad613b\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Mechanics: Theory and Experiment","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1742-5468/ad613b","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
Minimal model for chirally induced spin selectivity: spin-orbit coupling, tunneling and decoherence
Here we review a universal model for chirally induced spin-selectivity (CISS) as a standalone effect occurring in chiral molecules. We tie together the results of forward scattering in the gas phase to the results for photoelectrons in chiral self-assembled monolayers, and the more contemporary results in two terminal transport setups. We discuss the ingredients that are necessarily present in all experiments to date, which we identify as: (i) chirality, be it point, helical or configurational, (ii) the spin–orbit coupling as the spin active coupling of atomic origin, (iii) decoherence as a time-reversal symmetry breaking mechanism that avoids reciprocity relations in the linear regime and finally (iv) tunneling that accounts for the magnitude of the spin polarization effect. This proposal does not discard other mechanisms that can yield comparable spin effects related to interactions of the molecule to contacts or substrates that have been proposed but are less universal or apply to specific situations. Finally, we discuss recent results suggesting CISS as a molecular phenomenon in the realms of enantiomer selectivity, coherent electron transfer, and spin effects in chiroptical activity.
期刊介绍:
JSTAT is targeted to a broad community interested in different aspects of statistical physics, which are roughly defined by the fields represented in the conferences called ''Statistical Physics''. Submissions from experimentalists working on all the topics which have some ''connection to statistical physics are also strongly encouraged.
The journal covers different topics which correspond to the following keyword sections.
1. Quantum statistical physics, condensed matter, integrable systems
Scientific Directors: Eduardo Fradkin and Giuseppe Mussardo
2. Classical statistical mechanics, equilibrium and non-equilibrium
Scientific Directors: David Mukamel, Matteo Marsili and Giuseppe Mussardo
3. Disordered systems, classical and quantum
Scientific Directors: Eduardo Fradkin and Riccardo Zecchina
4. Interdisciplinary statistical mechanics
Scientific Directors: Matteo Marsili and Riccardo Zecchina
5. Biological modelling and information
Scientific Directors: Matteo Marsili, William Bialek and Riccardo Zecchina