无线传感器网络中缺失数据恢复和故障节点检测的新方法

IF 1.7 4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC International Journal of Communication Systems Pub Date : 2024-08-01 DOI:10.1002/dac.5924
R. Thiyagarajan, N. Nagabhooshanam, K.D.V. Prasad, P. Poojitha
{"title":"无线传感器网络中缺失数据恢复和故障节点检测的新方法","authors":"R. Thiyagarajan, N. Nagabhooshanam, K.D.V. Prasad, P. Poojitha","doi":"10.1002/dac.5924","DOIUrl":null,"url":null,"abstract":"SummaryEnsuring data integrity in wireless sensor networks (WSNs) is crucial for accurate monitoring, yet missing data due to sensor faults present a significant challenge. This research introduces an innovative approach that integrates advanced data recovery techniques with leading‐edge methods to address this issue. The system begins by identifying and isolating fault nodes using a specialized algorithm that analyzes network behavior. By applying fuzzy density‐based spatial clustering of applications with noise (FDBSCAN), potential fault nodes are precisely located based on deviations from expected patterns. Subsequently, an intelligent missing data recovery mechanism powered by bidirectional long short‐term memory (Bi‐LSTM) networks takes action. The Bi‐LSTM model is trained on existing sensor data to capture intricate patterns and dependencies, enabling accurate prediction and reconstruction of missing values caused by identified faults. The synergy between Bi‐LSTM for missing data recovery and FDBSCAN for fault node detection comprehensively addresses the missing data problem in WSNs. In missing data recovery, it demonstrates low mean absolute deviation (MAD) ranging from 0.021 to 0.13 and mean squared deviation (MSD) ranging from 0.0025 to 0.05 across various missing data ratios. Data reliability remains consistently high at 96% to 98%, even with up to 80% missing data. For fault node detection, the approach achieves precision of 95.7%, recall of 96.3%, F1‐score of 96.1%, and accuracy of 97.4%, outperforming existing techniques. The computational cost during training is noted at 5.79 h, presenting a limitation compared to other methods. This research highlights the importance of integrating fault node detection into missing data recovery mechanisms, presenting an innovative solution for the advancement of WSNs.","PeriodicalId":13946,"journal":{"name":"International Journal of Communication Systems","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel approach for missing data recovery and fault nodes detection in wireless sensor networks\",\"authors\":\"R. Thiyagarajan, N. Nagabhooshanam, K.D.V. Prasad, P. Poojitha\",\"doi\":\"10.1002/dac.5924\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SummaryEnsuring data integrity in wireless sensor networks (WSNs) is crucial for accurate monitoring, yet missing data due to sensor faults present a significant challenge. This research introduces an innovative approach that integrates advanced data recovery techniques with leading‐edge methods to address this issue. The system begins by identifying and isolating fault nodes using a specialized algorithm that analyzes network behavior. By applying fuzzy density‐based spatial clustering of applications with noise (FDBSCAN), potential fault nodes are precisely located based on deviations from expected patterns. Subsequently, an intelligent missing data recovery mechanism powered by bidirectional long short‐term memory (Bi‐LSTM) networks takes action. The Bi‐LSTM model is trained on existing sensor data to capture intricate patterns and dependencies, enabling accurate prediction and reconstruction of missing values caused by identified faults. The synergy between Bi‐LSTM for missing data recovery and FDBSCAN for fault node detection comprehensively addresses the missing data problem in WSNs. In missing data recovery, it demonstrates low mean absolute deviation (MAD) ranging from 0.021 to 0.13 and mean squared deviation (MSD) ranging from 0.0025 to 0.05 across various missing data ratios. Data reliability remains consistently high at 96% to 98%, even with up to 80% missing data. For fault node detection, the approach achieves precision of 95.7%, recall of 96.3%, F1‐score of 96.1%, and accuracy of 97.4%, outperforming existing techniques. The computational cost during training is noted at 5.79 h, presenting a limitation compared to other methods. This research highlights the importance of integrating fault node detection into missing data recovery mechanisms, presenting an innovative solution for the advancement of WSNs.\",\"PeriodicalId\":13946,\"journal\":{\"name\":\"International Journal of Communication Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Communication Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1002/dac.5924\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Communication Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/dac.5924","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

摘要确保无线传感器网络(WSN)中的数据完整性对于准确监测至关重要,但传感器故障导致的数据丢失是一个重大挑战。这项研究引入了一种创新方法,将先进的数据恢复技术与前沿方法相结合,以解决这一问题。该系统首先使用一种分析网络行为的专门算法来识别和隔离故障节点。通过应用基于模糊密度的噪声应用空间聚类(FDBSCAN),根据与预期模式的偏差精确定位潜在的故障节点。随后,由双向长短期记忆(Bi-LSTM)网络驱动的智能缺失数据恢复机制就会发挥作用。Bi-LSTM 模型在现有传感器数据上进行训练,以捕捉错综复杂的模式和依赖关系,从而准确预测和重建由已识别故障引起的缺失值。用于缺失数据恢复的 Bi-LSTM 与用于故障节点检测的 FDBSCAN 的协同作用全面解决了 WSN 中的缺失数据问题。在缺失数据恢复方面,在各种缺失数据比率下,其平均绝对偏差(MAD)从 0.021 到 0.13 不等,平均平方差(MSD)从 0.0025 到 0.05 不等。即使数据缺失率高达 80%,数据可靠性也始终保持在 96% 至 98% 的高水平。在故障节点检测方面,该方法的精确度为 95.7%,召回率为 96.3%,F1 分数为 96.1%,准确率为 97.4%,优于现有技术。训练期间的计算成本为 5.79 小时,与其他方法相比存在局限性。这项研究强调了将故障节点检测整合到丢失数据恢复机制中的重要性,为 WSN 的发展提供了一种创新的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel approach for missing data recovery and fault nodes detection in wireless sensor networks
SummaryEnsuring data integrity in wireless sensor networks (WSNs) is crucial for accurate monitoring, yet missing data due to sensor faults present a significant challenge. This research introduces an innovative approach that integrates advanced data recovery techniques with leading‐edge methods to address this issue. The system begins by identifying and isolating fault nodes using a specialized algorithm that analyzes network behavior. By applying fuzzy density‐based spatial clustering of applications with noise (FDBSCAN), potential fault nodes are precisely located based on deviations from expected patterns. Subsequently, an intelligent missing data recovery mechanism powered by bidirectional long short‐term memory (Bi‐LSTM) networks takes action. The Bi‐LSTM model is trained on existing sensor data to capture intricate patterns and dependencies, enabling accurate prediction and reconstruction of missing values caused by identified faults. The synergy between Bi‐LSTM for missing data recovery and FDBSCAN for fault node detection comprehensively addresses the missing data problem in WSNs. In missing data recovery, it demonstrates low mean absolute deviation (MAD) ranging from 0.021 to 0.13 and mean squared deviation (MSD) ranging from 0.0025 to 0.05 across various missing data ratios. Data reliability remains consistently high at 96% to 98%, even with up to 80% missing data. For fault node detection, the approach achieves precision of 95.7%, recall of 96.3%, F1‐score of 96.1%, and accuracy of 97.4%, outperforming existing techniques. The computational cost during training is noted at 5.79 h, presenting a limitation compared to other methods. This research highlights the importance of integrating fault node detection into missing data recovery mechanisms, presenting an innovative solution for the advancement of WSNs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
9.50%
发文量
323
审稿时长
7.9 months
期刊介绍: The International Journal of Communication Systems provides a forum for R&D, open to researchers from all types of institutions and organisations worldwide, aimed at the increasingly important area of communication technology. The Journal''s emphasis is particularly on the issues impacting behaviour at the system, service and management levels. Published twelve times a year, it provides coverage of advances that have a significant potential to impact the immense technical and commercial opportunities in the communications sector. The International Journal of Communication Systems strives to select a balance of contributions that promotes technical innovation allied to practical relevance across the range of system types and issues. The Journal addresses both public communication systems (Telecommunication, mobile, Internet, and Cable TV) and private systems (Intranets, enterprise networks, LANs, MANs, WANs). The following key areas and issues are regularly covered: -Transmission/Switching/Distribution technologies (ATM, SDH, TCP/IP, routers, DSL, cable modems, VoD, VoIP, WDM, etc.) -System control, network/service management -Network and Internet protocols and standards -Client-server, distributed and Web-based communication systems -Broadband and multimedia systems and applications, with a focus on increased service variety and interactivity -Trials of advanced systems and services; their implementation and evaluation -Novel concepts and improvements in technique; their theoretical basis and performance analysis using measurement/testing, modelling and simulation -Performance evaluation issues and methods.
期刊最新文献
Implementation of optimal routing in heterogeneous wireless sensor network with multi‐channel Media Access Control protocol using Enhanced Henry Gas Solubility Optimizer Collision detection and mitigation based on optimization and Kronecker recurrent neural network in WSN Dual‐port circular patch antenna array: Enhancing gain and minimizing cross‐polarization for mm‐wave 5G networks Performance enhancement in hybrid SDN using advanced deep learning with multi‐objective optimization frameworks under heterogeneous environments Enhanced capacitated next controller placement in software‐defined network with modified capacity constraint
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1