用于扩展碱性 ATR-SEIRAS 研究的硅晶片薄层金刚石涂层†...

IF 5.5 1区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Chinese Journal of Chemistry Pub Date : 2024-07-31 DOI:10.1002/cjoc.202400499
Wencheng Li, Wei-Yi Zhang, Baoxin Ni, Peng Shen, Yu Qiao, Xinchang Wang, Xian-Yin Ma, Wen-Bin Cai, Kun Jiang
{"title":"用于扩展碱性 ATR-SEIRAS 研究的硅晶片薄层金刚石涂层†...","authors":"Wencheng Li,&nbsp;Wei-Yi Zhang,&nbsp;Baoxin Ni,&nbsp;Peng Shen,&nbsp;Yu Qiao,&nbsp;Xinchang Wang,&nbsp;Xian-Yin Ma,&nbsp;Wen-Bin Cai,&nbsp;Kun Jiang","doi":"10.1002/cjoc.202400499","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Electrochemical attenuated total reflection surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS) plays an important role in deciphering interfacial reaction mechanisms at molecular level. However, the corrosive etching of Si internal reflection element by OH<sup>−</sup> largely impedes reliable SEIRAS measurements in strong alkaline electrolytes. Herein, a dense and chemically inert nanocrystalline diamond (NCD) film is successfully fabricated at a thickness of ~120 nm through hot filament chemical vapor deposition on a micromachined Si wafer to insulate the OH<sup>−</sup> etching. A reversible interfacial water feature without spectral interference of Si-O band is obtained in 1.0 mol·L<sup>–1</sup> KOH on Au/NCD/Si film electrode. Afterwards, electrochemical CO reduction reaction on Cu film electrode is explored in different KOH concentrations ranging from 0.1 to 3.0 mol·L<sup>–1</sup> as a model reaction. A redshift of CO<sub>L</sub> band, as well as its lower intensity but faster depletion kinetics, is noted with increasing electrolyte pH, whereas CO<sub>B</sub> is identified as an inert spectator accumulating on Cu surface. Our present work demonstrates the alkaline resistant feature of diamond/Si composite internal reflection element, which could be a powerful platform to study electrocatalytic reactions in strong alkaline media.</p>\n <p>\n </p>\n </div>","PeriodicalId":151,"journal":{"name":"Chinese Journal of Chemistry","volume":"42 23","pages":"3063-3068"},"PeriodicalIF":5.5000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thin-Layer Diamond Coating on Si Wafer for Extended Alkaline ATR-SEIRAS Investigations†\",\"authors\":\"Wencheng Li,&nbsp;Wei-Yi Zhang,&nbsp;Baoxin Ni,&nbsp;Peng Shen,&nbsp;Yu Qiao,&nbsp;Xinchang Wang,&nbsp;Xian-Yin Ma,&nbsp;Wen-Bin Cai,&nbsp;Kun Jiang\",\"doi\":\"10.1002/cjoc.202400499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Electrochemical attenuated total reflection surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS) plays an important role in deciphering interfacial reaction mechanisms at molecular level. However, the corrosive etching of Si internal reflection element by OH<sup>−</sup> largely impedes reliable SEIRAS measurements in strong alkaline electrolytes. Herein, a dense and chemically inert nanocrystalline diamond (NCD) film is successfully fabricated at a thickness of ~120 nm through hot filament chemical vapor deposition on a micromachined Si wafer to insulate the OH<sup>−</sup> etching. A reversible interfacial water feature without spectral interference of Si-O band is obtained in 1.0 mol·L<sup>–1</sup> KOH on Au/NCD/Si film electrode. Afterwards, electrochemical CO reduction reaction on Cu film electrode is explored in different KOH concentrations ranging from 0.1 to 3.0 mol·L<sup>–1</sup> as a model reaction. A redshift of CO<sub>L</sub> band, as well as its lower intensity but faster depletion kinetics, is noted with increasing electrolyte pH, whereas CO<sub>B</sub> is identified as an inert spectator accumulating on Cu surface. Our present work demonstrates the alkaline resistant feature of diamond/Si composite internal reflection element, which could be a powerful platform to study electrocatalytic reactions in strong alkaline media.</p>\\n <p>\\n </p>\\n </div>\",\"PeriodicalId\":151,\"journal\":{\"name\":\"Chinese Journal of Chemistry\",\"volume\":\"42 23\",\"pages\":\"3063-3068\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cjoc.202400499\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjoc.202400499","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

综合摘要电化学衰减全反射表面增强红外吸收光谱(ATR-SEIRAS)在破译分子水平的界面反应机制方面发挥着重要作用。然而,在强碱性电解质中,硅内部反射元件受到 OH- 的腐蚀性蚀刻,这在很大程度上阻碍了可靠的 SEIRAS 测量。在此,通过在微加工硅晶片上进行热丝化学气相沉积,成功制备出厚度约为 120 nm 的致密化学惰性纳米晶金刚石 (NCD) 薄膜,以隔绝 OH- 蚀刻。在 1.0 mol-L-1 KOH 溶液中,Au/NCD/Si 薄膜电极上出现了可逆的界面水特征,且没有 Si-O 波段的光谱干扰。随后,以不同浓度(0.1 至 3.0 mol-L-1)的 KOH 为模型,探讨了铜膜电极上的电化学 CO 还原反应。结果表明,随着电解质 pH 值的增加,COL 波段发生重移,其强度降低,但耗竭动力学速度加快,而 COB 则被确定为在铜表面积聚的惰性旁观者。我们目前的工作证明了金刚石/硅复合内反射元件的耐碱特性,它可以成为研究强碱性介质中电催化反应的强大平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thin-Layer Diamond Coating on Si Wafer for Extended Alkaline ATR-SEIRAS Investigations†

Electrochemical attenuated total reflection surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS) plays an important role in deciphering interfacial reaction mechanisms at molecular level. However, the corrosive etching of Si internal reflection element by OH largely impedes reliable SEIRAS measurements in strong alkaline electrolytes. Herein, a dense and chemically inert nanocrystalline diamond (NCD) film is successfully fabricated at a thickness of ~120 nm through hot filament chemical vapor deposition on a micromachined Si wafer to insulate the OH etching. A reversible interfacial water feature without spectral interference of Si-O band is obtained in 1.0 mol·L–1 KOH on Au/NCD/Si film electrode. Afterwards, electrochemical CO reduction reaction on Cu film electrode is explored in different KOH concentrations ranging from 0.1 to 3.0 mol·L–1 as a model reaction. A redshift of COL band, as well as its lower intensity but faster depletion kinetics, is noted with increasing electrolyte pH, whereas COB is identified as an inert spectator accumulating on Cu surface. Our present work demonstrates the alkaline resistant feature of diamond/Si composite internal reflection element, which could be a powerful platform to study electrocatalytic reactions in strong alkaline media.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chinese Journal of Chemistry
Chinese Journal of Chemistry 化学-化学综合
CiteScore
8.80
自引率
14.80%
发文量
422
审稿时长
1.7 months
期刊介绍: The Chinese Journal of Chemistry is an international forum for peer-reviewed original research results in all fields of chemistry. Founded in 1983 under the name Acta Chimica Sinica English Edition and renamed in 1990 as Chinese Journal of Chemistry, the journal publishes a stimulating mixture of Accounts, Full Papers, Notes and Communications in English.
期刊最新文献
Inside Back Cover Back Cover Contents Cover Picture Meet Our New Associate Editor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1