Chao-qun Xia, Hong-pu Zhou, Tian-shuo Song, Shu-guang Liu, Tai Yang, Qiang Li
{"title":"热轧处理对 Zr-Sn-Co 三元合金微观结构、机械性能和腐蚀性能的影响","authors":"Chao-qun Xia, Hong-pu Zhou, Tian-shuo Song, Shu-guang Liu, Tai Yang, Qiang Li","doi":"10.1007/s42243-024-01287-2","DOIUrl":null,"url":null,"abstract":"<p>The microstructure, mechanical properties, and corrosion resistance of as-cast Zr–Sn–Co ternary alloys have been investigated in this experiment. The properties of as-cast Zr–1.5Sn–<i>x</i>Co (<i>x</i> = 0, 2.5, 5, 7.5, and 10 at.%) ternary alloys were investigated, and the alloy composition exhibiting the best comprehensive performance was identified. Subsequently, the chosen alloys were subjected to hot rolling treatment. The microstructure of the alloys in the rolled state was analyzed using the optical microscope, X-ray diffractometer, and scanning electron microscope. The mechanical properties of the alloys were analyzed using room temperature compression tests and microhardness tests, while the corrosion properties of the alloy were investigated through electrochemical testing. The results show that the strength of as-cast Zr–1.5Sn–Co ternary alloy increases significantly with the increase in Co content. The incorporation of Co element makes the corrosion resistance of as-cast Zr–1.5Sn–Co alloy increase significantly. The hot rolling treatment has minimal effect on enhancing the corrosion resistance of Zr–1.5Sn–2.5Co alloy. However, the mechanical properties of Zr–1.5Sn–2.5Co alloy after rolling treatment are significantly enhanced. The alloy exhibits the highest strength and hardness at a rolling temperature of 600 °C and exhibits the best plasticity at a rolling temperature of 800 °C.</p>","PeriodicalId":16151,"journal":{"name":"Journal of Iron and Steel Research International","volume":"26 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of hot rolling treatment on microstructure, mechanical, and corrosion properties of Zr–Sn–Co ternary alloys\",\"authors\":\"Chao-qun Xia, Hong-pu Zhou, Tian-shuo Song, Shu-guang Liu, Tai Yang, Qiang Li\",\"doi\":\"10.1007/s42243-024-01287-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The microstructure, mechanical properties, and corrosion resistance of as-cast Zr–Sn–Co ternary alloys have been investigated in this experiment. The properties of as-cast Zr–1.5Sn–<i>x</i>Co (<i>x</i> = 0, 2.5, 5, 7.5, and 10 at.%) ternary alloys were investigated, and the alloy composition exhibiting the best comprehensive performance was identified. Subsequently, the chosen alloys were subjected to hot rolling treatment. The microstructure of the alloys in the rolled state was analyzed using the optical microscope, X-ray diffractometer, and scanning electron microscope. The mechanical properties of the alloys were analyzed using room temperature compression tests and microhardness tests, while the corrosion properties of the alloy were investigated through electrochemical testing. The results show that the strength of as-cast Zr–1.5Sn–Co ternary alloy increases significantly with the increase in Co content. The incorporation of Co element makes the corrosion resistance of as-cast Zr–1.5Sn–Co alloy increase significantly. The hot rolling treatment has minimal effect on enhancing the corrosion resistance of Zr–1.5Sn–2.5Co alloy. However, the mechanical properties of Zr–1.5Sn–2.5Co alloy after rolling treatment are significantly enhanced. The alloy exhibits the highest strength and hardness at a rolling temperature of 600 °C and exhibits the best plasticity at a rolling temperature of 800 °C.</p>\",\"PeriodicalId\":16151,\"journal\":{\"name\":\"Journal of Iron and Steel Research International\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Iron and Steel Research International\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s42243-024-01287-2\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Iron and Steel Research International","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s42243-024-01287-2","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of hot rolling treatment on microstructure, mechanical, and corrosion properties of Zr–Sn–Co ternary alloys
The microstructure, mechanical properties, and corrosion resistance of as-cast Zr–Sn–Co ternary alloys have been investigated in this experiment. The properties of as-cast Zr–1.5Sn–xCo (x = 0, 2.5, 5, 7.5, and 10 at.%) ternary alloys were investigated, and the alloy composition exhibiting the best comprehensive performance was identified. Subsequently, the chosen alloys were subjected to hot rolling treatment. The microstructure of the alloys in the rolled state was analyzed using the optical microscope, X-ray diffractometer, and scanning electron microscope. The mechanical properties of the alloys were analyzed using room temperature compression tests and microhardness tests, while the corrosion properties of the alloy were investigated through electrochemical testing. The results show that the strength of as-cast Zr–1.5Sn–Co ternary alloy increases significantly with the increase in Co content. The incorporation of Co element makes the corrosion resistance of as-cast Zr–1.5Sn–Co alloy increase significantly. The hot rolling treatment has minimal effect on enhancing the corrosion resistance of Zr–1.5Sn–2.5Co alloy. However, the mechanical properties of Zr–1.5Sn–2.5Co alloy after rolling treatment are significantly enhanced. The alloy exhibits the highest strength and hardness at a rolling temperature of 600 °C and exhibits the best plasticity at a rolling temperature of 800 °C.
期刊介绍:
Publishes critically reviewed original research of archival significance
Covers hydrometallurgy, pyrometallurgy, electrometallurgy, transport phenomena, process control, physical chemistry, solidification, mechanical working, solid state reactions, materials processing, and more
Includes welding & joining, surface treatment, mathematical modeling, corrosion, wear and abrasion
Journal of Iron and Steel Research International publishes original papers and occasional invited reviews on aspects of research and technology in the process metallurgy and metallic materials. Coverage emphasizes the relationships among the processing, structure and properties of metals, including advanced steel materials, superalloy, intermetallics, metallic functional materials, powder metallurgy, structural titanium alloy, composite steel materials, high entropy alloy, amorphous alloys, metallic nanomaterials, etc..