{"title":"冠状动脉支架有限元模型中腐蚀对镁合金拉伸性能的影响以及几何优化","authors":"Inês V. Gomes, José L. Alves, Hélder Puga","doi":"10.3390/met14080885","DOIUrl":null,"url":null,"abstract":"This study investigated the influence of corrosion-induced deterioration of the tensile properties of a Mg-1 wt.% Ca alloy on the performance of a coronary artery stent model fabricated using the alloy wire. Finite element analysis was used to determine the change in various characteristics of the model when immersed in a biosimulation aqueous solution (Earle’s Balanced Salt Solution). Results from tensile tests on wires fabricated from the alloy (non-treated versus ultrasound-assisted casting (US)) were used as input to a shape optimisation study of the stent, which aimed at reducing stent strut thickness and minimising corrosion-related parameters such as equivalent plastic strain and residual stress. For each of the characteristics, it was found that the US treatment produced a more desirable result compared to the stents modelled using non-treated material data; for example, the decrease in strut thickness, equivalent plastic strain, and residual stress were each markedly greater, while keeping the stent’s functionality. These results suggest that US-treated Mg-1 wt./wt.% Ca alloy may be promising for fabricating biodegradable coronary artery stents.","PeriodicalId":18461,"journal":{"name":"Metals","volume":"79 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of Corrosion on Tensile Properties of a Mg Alloy in a Finite Element Model of a Coronary Artery Stent Coupled with Geometry Optimization\",\"authors\":\"Inês V. Gomes, José L. Alves, Hélder Puga\",\"doi\":\"10.3390/met14080885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigated the influence of corrosion-induced deterioration of the tensile properties of a Mg-1 wt.% Ca alloy on the performance of a coronary artery stent model fabricated using the alloy wire. Finite element analysis was used to determine the change in various characteristics of the model when immersed in a biosimulation aqueous solution (Earle’s Balanced Salt Solution). Results from tensile tests on wires fabricated from the alloy (non-treated versus ultrasound-assisted casting (US)) were used as input to a shape optimisation study of the stent, which aimed at reducing stent strut thickness and minimising corrosion-related parameters such as equivalent plastic strain and residual stress. For each of the characteristics, it was found that the US treatment produced a more desirable result compared to the stents modelled using non-treated material data; for example, the decrease in strut thickness, equivalent plastic strain, and residual stress were each markedly greater, while keeping the stent’s functionality. These results suggest that US-treated Mg-1 wt./wt.% Ca alloy may be promising for fabricating biodegradable coronary artery stents.\",\"PeriodicalId\":18461,\"journal\":{\"name\":\"Metals\",\"volume\":\"79 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/met14080885\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/met14080885","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
本研究探讨了镁-1 wt.% 钙合金的拉伸性能因腐蚀而退化对使用该合金丝制造的冠状动脉支架模型性能的影响。研究采用有限元分析法确定模型浸入生物模拟水溶液(Earle's 平衡盐溶液)后各种特性的变化。用合金制造的金属丝(未处理与超声辅助铸造(US))的拉伸试验结果被用作支架形状优化研究的输入,该研究旨在减少支架支柱厚度,并最大限度地降低腐蚀相关参数,如等效塑性应变和残余应力。研究发现,与使用未处理材料数据建模的支架相比,US 处理对每种特性都产生了更理想的结果;例如,在保持支架功能的同时,支架厚度、等效塑性应变和残余应力的减小幅度都明显增大。这些结果表明,经 US 处理的 Mg-1 wt./wt.% Ca 合金有望用于制造可生物降解的冠状动脉支架。
Impact of Corrosion on Tensile Properties of a Mg Alloy in a Finite Element Model of a Coronary Artery Stent Coupled with Geometry Optimization
This study investigated the influence of corrosion-induced deterioration of the tensile properties of a Mg-1 wt.% Ca alloy on the performance of a coronary artery stent model fabricated using the alloy wire. Finite element analysis was used to determine the change in various characteristics of the model when immersed in a biosimulation aqueous solution (Earle’s Balanced Salt Solution). Results from tensile tests on wires fabricated from the alloy (non-treated versus ultrasound-assisted casting (US)) were used as input to a shape optimisation study of the stent, which aimed at reducing stent strut thickness and minimising corrosion-related parameters such as equivalent plastic strain and residual stress. For each of the characteristics, it was found that the US treatment produced a more desirable result compared to the stents modelled using non-treated material data; for example, the decrease in strut thickness, equivalent plastic strain, and residual stress were each markedly greater, while keeping the stent’s functionality. These results suggest that US-treated Mg-1 wt./wt.% Ca alloy may be promising for fabricating biodegradable coronary artery stents.
期刊介绍:
Metals (ISSN 2075-4701) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Metals provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of metals.