SES-yolov5:小物体图形检测和可视化应用

Fengling Li, Zheng Yang, Yan Gui
{"title":"SES-yolov5:小物体图形检测和可视化应用","authors":"Fengling Li, Zheng Yang, Yan Gui","doi":"10.1007/s00371-024-03591-0","DOIUrl":null,"url":null,"abstract":"<p>Small object graphics detection plays a crucial role in various domains, including surveillance, urban management, and autonomous driving. However, existing object detection methods perform poorly when it comes to detecting multiple small objects. To tackle this issue, we propose the SES-yolov5 algorithm for small object detection that incorporates a multi-scale fusion attention mechanism and feature enhancement techniques. Firstly, we enhance the neck network structure by integrating shallow feature fusion (SFF) and small object detection head (STD), enabling the extraction of more detailed shallow feature information from high-resolution images. Secondly, we integrate an efficient channel and spatial attention (ECSA) mechanism into the backbone network to further filter redundant semantic information while highlighting the small objects for detection. Finally, we introduce a spatial feature refinement module (SFRM) to connect the main network with the neck network, enhancing rich features of input neck data while expanding the receptive field of images and minimizing loss of small object information. Experimental results on the VisDrone2021 dataset demonstrate that compared to traditional YOLOv5 algorithm, SES-yolov5 achieves an 8.3% increase in mAP50 score along with improved detection accuracy by 7.5% and increased recall rate by 6.4% on average. The effectiveness of our method is also validated on the TT100K dataset. Code is available at https://github.com/Yangzheng00/SES-yolov5.git.</p>","PeriodicalId":501186,"journal":{"name":"The Visual Computer","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SES-yolov5: small object graphics detection and visualization applications\",\"authors\":\"Fengling Li, Zheng Yang, Yan Gui\",\"doi\":\"10.1007/s00371-024-03591-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Small object graphics detection plays a crucial role in various domains, including surveillance, urban management, and autonomous driving. However, existing object detection methods perform poorly when it comes to detecting multiple small objects. To tackle this issue, we propose the SES-yolov5 algorithm for small object detection that incorporates a multi-scale fusion attention mechanism and feature enhancement techniques. Firstly, we enhance the neck network structure by integrating shallow feature fusion (SFF) and small object detection head (STD), enabling the extraction of more detailed shallow feature information from high-resolution images. Secondly, we integrate an efficient channel and spatial attention (ECSA) mechanism into the backbone network to further filter redundant semantic information while highlighting the small objects for detection. Finally, we introduce a spatial feature refinement module (SFRM) to connect the main network with the neck network, enhancing rich features of input neck data while expanding the receptive field of images and minimizing loss of small object information. Experimental results on the VisDrone2021 dataset demonstrate that compared to traditional YOLOv5 algorithm, SES-yolov5 achieves an 8.3% increase in mAP50 score along with improved detection accuracy by 7.5% and increased recall rate by 6.4% on average. The effectiveness of our method is also validated on the TT100K dataset. Code is available at https://github.com/Yangzheng00/SES-yolov5.git.</p>\",\"PeriodicalId\":501186,\"journal\":{\"name\":\"The Visual Computer\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Visual Computer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00371-024-03591-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Visual Computer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00371-024-03591-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

小物体图形检测在监控、城市管理和自动驾驶等多个领域发挥着至关重要的作用。然而,现有的物体检测方法在检测多个小物体时表现不佳。为解决这一问题,我们提出了 SES-yolov5 小物体检测算法,该算法结合了多尺度融合关注机制和特征增强技术。首先,我们通过整合浅层特征融合(SFF)和小物体检测头(STD)来增强颈部网络结构,从而能够从高分辨率图像中提取更详细的浅层特征信息。其次,我们在骨干网络中集成了高效通道和空间注意力(ECSA)机制,以进一步过滤冗余语义信息,同时突出小物体的检测。最后,我们引入了空间特征细化模块(SFRM),将主干网络与颈部网络连接起来,增强了输入颈部数据的丰富特征,同时扩大了图像的感受野,减少了小物体信息的损失。在 VisDrone2021 数据集上的实验结果表明,与传统的 YOLOv5 算法相比,SES-yolov5 的 mAP50 分数提高了 8.3%,检测准确率提高了 7.5%,召回率平均提高了 6.4%。我们的方法的有效性也在 TT100K 数据集上得到了验证。代码见 https://github.com/Yangzheng00/SES-yolov5.git。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SES-yolov5: small object graphics detection and visualization applications

Small object graphics detection plays a crucial role in various domains, including surveillance, urban management, and autonomous driving. However, existing object detection methods perform poorly when it comes to detecting multiple small objects. To tackle this issue, we propose the SES-yolov5 algorithm for small object detection that incorporates a multi-scale fusion attention mechanism and feature enhancement techniques. Firstly, we enhance the neck network structure by integrating shallow feature fusion (SFF) and small object detection head (STD), enabling the extraction of more detailed shallow feature information from high-resolution images. Secondly, we integrate an efficient channel and spatial attention (ECSA) mechanism into the backbone network to further filter redundant semantic information while highlighting the small objects for detection. Finally, we introduce a spatial feature refinement module (SFRM) to connect the main network with the neck network, enhancing rich features of input neck data while expanding the receptive field of images and minimizing loss of small object information. Experimental results on the VisDrone2021 dataset demonstrate that compared to traditional YOLOv5 algorithm, SES-yolov5 achieves an 8.3% increase in mAP50 score along with improved detection accuracy by 7.5% and increased recall rate by 6.4% on average. The effectiveness of our method is also validated on the TT100K dataset. Code is available at https://github.com/Yangzheng00/SES-yolov5.git.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Advanced deepfake detection with enhanced Resnet-18 and multilayer CNN max pooling Video-driven musical composition using large language model with memory-augmented state space 3D human pose estimation using spatiotemporal hypergraphs and its public benchmark on opera videos Topological structure extraction for computing surface–surface intersection curves Lunet: an enhanced upsampling fusion network with efficient self-attention for semantic segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1