Se-Min Kim, Farhath Sultana, Funda Korkmaz, Satish Rojekar, Anusha Pallapati, Vitaly Ryu, Daria Lizneva, Tony Yuen, Clifford J. Rosen, Mone Zaidi
{"title":"骨骼神经内分泌学","authors":"Se-Min Kim, Farhath Sultana, Funda Korkmaz, Satish Rojekar, Anusha Pallapati, Vitaly Ryu, Daria Lizneva, Tony Yuen, Clifford J. Rosen, Mone Zaidi","doi":"10.1007/s11102-024-01437-5","DOIUrl":null,"url":null,"abstract":"<p>The past decade has witnessed significant advances in our understanding of skeletal homeostasis and the mechanisms that mediate the loss of bone in primary and secondary osteoporosis. Recent breakthroughs have primarily emerged from identifying disease–causing mutations and phenocopying human bone disease in rodents. Notably, using genetically–modified rodent models, disrupting the reciprocal relationship with tropic pituitary hormone and effector hormones, we have learned that pituitary hormones have independent roles in skeletal physiology, beyond their effects exerted through target endocrine glands. The rise of follicle–stimulating hormone (FSH) in the late perimenopause may account, at least in part, for the rapid bone loss when estrogen is normal, while low thyroid–stimulating hormone (TSH) levels may contribute to the bone loss in thyrotoxicosis. Admittedly speculative, suppressed levels of adrenocorticotropic hormone (ACTH) may directly exacerbate bone loss in the setting of glucocorticoid–induced osteoporosis. Furthermore, beyond their established roles in reproduction and lactation, oxytocin and prolactin may affect intergenerational calcium transfer and therefore fetal skeletal mineralization, whereas elevated vasopressin levels in chronic hyponatremic states may increase the risk of bone loss.. Here, we discuss the interaction of each pituitary hormone in relation to its role in bone physiology and pathophysiology.</p>","PeriodicalId":20202,"journal":{"name":"Pituitary","volume":"21 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neuroendocrinology of bone\",\"authors\":\"Se-Min Kim, Farhath Sultana, Funda Korkmaz, Satish Rojekar, Anusha Pallapati, Vitaly Ryu, Daria Lizneva, Tony Yuen, Clifford J. Rosen, Mone Zaidi\",\"doi\":\"10.1007/s11102-024-01437-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The past decade has witnessed significant advances in our understanding of skeletal homeostasis and the mechanisms that mediate the loss of bone in primary and secondary osteoporosis. Recent breakthroughs have primarily emerged from identifying disease–causing mutations and phenocopying human bone disease in rodents. Notably, using genetically–modified rodent models, disrupting the reciprocal relationship with tropic pituitary hormone and effector hormones, we have learned that pituitary hormones have independent roles in skeletal physiology, beyond their effects exerted through target endocrine glands. The rise of follicle–stimulating hormone (FSH) in the late perimenopause may account, at least in part, for the rapid bone loss when estrogen is normal, while low thyroid–stimulating hormone (TSH) levels may contribute to the bone loss in thyrotoxicosis. Admittedly speculative, suppressed levels of adrenocorticotropic hormone (ACTH) may directly exacerbate bone loss in the setting of glucocorticoid–induced osteoporosis. Furthermore, beyond their established roles in reproduction and lactation, oxytocin and prolactin may affect intergenerational calcium transfer and therefore fetal skeletal mineralization, whereas elevated vasopressin levels in chronic hyponatremic states may increase the risk of bone loss.. Here, we discuss the interaction of each pituitary hormone in relation to its role in bone physiology and pathophysiology.</p>\",\"PeriodicalId\":20202,\"journal\":{\"name\":\"Pituitary\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pituitary\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11102-024-01437-5\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pituitary","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11102-024-01437-5","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
The past decade has witnessed significant advances in our understanding of skeletal homeostasis and the mechanisms that mediate the loss of bone in primary and secondary osteoporosis. Recent breakthroughs have primarily emerged from identifying disease–causing mutations and phenocopying human bone disease in rodents. Notably, using genetically–modified rodent models, disrupting the reciprocal relationship with tropic pituitary hormone and effector hormones, we have learned that pituitary hormones have independent roles in skeletal physiology, beyond their effects exerted through target endocrine glands. The rise of follicle–stimulating hormone (FSH) in the late perimenopause may account, at least in part, for the rapid bone loss when estrogen is normal, while low thyroid–stimulating hormone (TSH) levels may contribute to the bone loss in thyrotoxicosis. Admittedly speculative, suppressed levels of adrenocorticotropic hormone (ACTH) may directly exacerbate bone loss in the setting of glucocorticoid–induced osteoporosis. Furthermore, beyond their established roles in reproduction and lactation, oxytocin and prolactin may affect intergenerational calcium transfer and therefore fetal skeletal mineralization, whereas elevated vasopressin levels in chronic hyponatremic states may increase the risk of bone loss.. Here, we discuss the interaction of each pituitary hormone in relation to its role in bone physiology and pathophysiology.
期刊介绍:
Pituitary is an international publication devoted to basic and clinical aspects of the pituitary gland. It is designed to publish original, high quality research in both basic and pituitary function as well as clinical pituitary disease.
The journal considers:
Biology of Pituitary Tumors
Mechanisms of Pituitary Hormone Secretion
Regulation of Pituitary Function
Prospective Clinical Studies of Pituitary Disease
Critical Basic and Clinical Reviews
Pituitary is directed at basic investigators, physiologists, clinical adult and pediatric endocrinologists, neurosurgeons and reproductive endocrinologists interested in the broad field of the pituitary and its disorders. The Editorial Board has been drawn from international experts in basic and clinical endocrinology. The journal offers a rapid turnaround time for review of manuscripts, and the high standard of the journal is maintained by a selective peer-review process which aims to publish only the highest quality manuscripts. Pituitary will foster the publication of creative scholarship as it pertains to the pituitary and will provide a forum for basic scientists and clinicians to publish their high quality pituitary-related work.