Padma P. Nimbhore, Ritu Tiwari, Tanmoy Hazra, Mahendra Pratap Yadav
{"title":"使用混合模型和 MDFC 特征提取方法对棉花作物病害进行分类","authors":"Padma P. Nimbhore, Ritu Tiwari, Tanmoy Hazra, Mahendra Pratap Yadav","doi":"10.1111/jph.13324","DOIUrl":null,"url":null,"abstract":"<p>A novel Modified Deep Fuzzy Clustering (MDFC) based classification model involves four major phases. They are preprocessing, segmentation, feature extraction and finally, detection and classification phase. To reduce noise and smooth the edges of the input image of the cotton crop, bilateral filtering is first used as a preprocessing approach. Next, a modified deep fuzzy clustering is suggested for the segmentation procedure that creates a collection of segments from the preprocessed image. The segmented image is then processed to extract relevant characteristics by using an enhanced Pyramid of Histogram Orientation Gradient (PHOG), Local Directional Ternary Pattern (LDTP), and statistical-based features. In order to detect and classify cotton crop diseases more effectively, this paper proposes a hybrid system. Here, the features are put through a detection phase, after which the extracted features are trained in the Bidirectional Gated Recurrent Unit (Bi-GRU) model to determine whether or not the cotton crop is infected. Once it is detected to be diseased, the type of disease is classified via an improved Recurrent Neural Network (RNN). In terms of several performance metrics, the proposed model is validated in comparison with the traditional approaches. The MDFC-based classification model outperforms existing models with a specificity of 0.9687 at a learning rate of 90. In contrast, other models achieve lower specificities: Bi-GRU (0.8436), RNN (0.8359), CNN (0.8654), LSTM (0.8769), SVM (0.7983), VGG16 (0.8619), DCNN (0.8725), BI-RNN + BI-LSTM (0.7869), and NN + CNN (0.85478).</p>","PeriodicalId":16843,"journal":{"name":"Journal of Phytopathology","volume":"172 4","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification of cotton crop disease using hybrid model and MDFC feature extraction method\",\"authors\":\"Padma P. Nimbhore, Ritu Tiwari, Tanmoy Hazra, Mahendra Pratap Yadav\",\"doi\":\"10.1111/jph.13324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A novel Modified Deep Fuzzy Clustering (MDFC) based classification model involves four major phases. They are preprocessing, segmentation, feature extraction and finally, detection and classification phase. To reduce noise and smooth the edges of the input image of the cotton crop, bilateral filtering is first used as a preprocessing approach. Next, a modified deep fuzzy clustering is suggested for the segmentation procedure that creates a collection of segments from the preprocessed image. The segmented image is then processed to extract relevant characteristics by using an enhanced Pyramid of Histogram Orientation Gradient (PHOG), Local Directional Ternary Pattern (LDTP), and statistical-based features. In order to detect and classify cotton crop diseases more effectively, this paper proposes a hybrid system. Here, the features are put through a detection phase, after which the extracted features are trained in the Bidirectional Gated Recurrent Unit (Bi-GRU) model to determine whether or not the cotton crop is infected. Once it is detected to be diseased, the type of disease is classified via an improved Recurrent Neural Network (RNN). In terms of several performance metrics, the proposed model is validated in comparison with the traditional approaches. The MDFC-based classification model outperforms existing models with a specificity of 0.9687 at a learning rate of 90. In contrast, other models achieve lower specificities: Bi-GRU (0.8436), RNN (0.8359), CNN (0.8654), LSTM (0.8769), SVM (0.7983), VGG16 (0.8619), DCNN (0.8725), BI-RNN + BI-LSTM (0.7869), and NN + CNN (0.85478).</p>\",\"PeriodicalId\":16843,\"journal\":{\"name\":\"Journal of Phytopathology\",\"volume\":\"172 4\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Phytopathology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jph.13324\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Phytopathology","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jph.13324","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Classification of cotton crop disease using hybrid model and MDFC feature extraction method
A novel Modified Deep Fuzzy Clustering (MDFC) based classification model involves four major phases. They are preprocessing, segmentation, feature extraction and finally, detection and classification phase. To reduce noise and smooth the edges of the input image of the cotton crop, bilateral filtering is first used as a preprocessing approach. Next, a modified deep fuzzy clustering is suggested for the segmentation procedure that creates a collection of segments from the preprocessed image. The segmented image is then processed to extract relevant characteristics by using an enhanced Pyramid of Histogram Orientation Gradient (PHOG), Local Directional Ternary Pattern (LDTP), and statistical-based features. In order to detect and classify cotton crop diseases more effectively, this paper proposes a hybrid system. Here, the features are put through a detection phase, after which the extracted features are trained in the Bidirectional Gated Recurrent Unit (Bi-GRU) model to determine whether or not the cotton crop is infected. Once it is detected to be diseased, the type of disease is classified via an improved Recurrent Neural Network (RNN). In terms of several performance metrics, the proposed model is validated in comparison with the traditional approaches. The MDFC-based classification model outperforms existing models with a specificity of 0.9687 at a learning rate of 90. In contrast, other models achieve lower specificities: Bi-GRU (0.8436), RNN (0.8359), CNN (0.8654), LSTM (0.8769), SVM (0.7983), VGG16 (0.8619), DCNN (0.8725), BI-RNN + BI-LSTM (0.7869), and NN + CNN (0.85478).
期刊介绍:
Journal of Phytopathology publishes original and review articles on all scientific aspects of applied phytopathology in agricultural and horticultural crops. Preference is given to contributions improving our understanding of the biotic and abiotic determinants of plant diseases, including epidemics and damage potential, as a basis for innovative disease management, modelling and forecasting. This includes practical aspects and the development of methods for disease diagnosis as well as infection bioassays.
Studies at the population, organism, physiological, biochemical and molecular genetic level are welcome. The journal scope comprises the pathology and epidemiology of plant diseases caused by microbial pathogens, viruses and nematodes.
Accepted papers should advance our conceptual knowledge of plant diseases, rather than presenting descriptive or screening data unrelated to phytopathological mechanisms or functions. Results from unrepeated experimental conditions or data with no or inappropriate statistical processing will not be considered. Authors are encouraged to look at past issues to ensure adherence to the standards of the journal.