多维非线性守恒定律的交替通量学习法

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-08-01 DOI:10.1137/23m1556605
Qing Li, Steinar Evje
{"title":"多维非线性守恒定律的交替通量学习法","authors":"Qing Li, Steinar Evje","doi":"10.1137/23m1556605","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page C421-C447, August 2024. <br/> Abstract. In a recent work [Q. Li and S. Evje, Netw. Heterog. Media, 18 (2023), pp. 48–79], it was explored how to identify the unknown flux function in a one-dimensional scalar conservation law. Key ingredients are symbolic neural networks to represent the candidate flux functions, entropy-satisfying numerical schemes, and a proper combination of initial data. The purpose of this work is to extend this methodology to a two-dimensional scalar conservation law ([math]) [math]. Straightforward extension of the method from the 1D to the 2D problem results in poor identification of the unknown [math] and [math]. Relying on ideas from joint and alternating equations training, a learning strategy is designed that enables accurate identification of the flux functions, even when 2D observations are sparse. It involves an alternating flux training approach where a first set of candidate flux functions obtained from joint training is improved through an alternating direction-dependent training strategy. Numerical investigations demonstrate that the method can effectively identify the true underlying flux functions [math] and [math] in the general case when they are nonconvex and unequal.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Alternating Flux Learning Method for Multidimensional Nonlinear Conservation Laws\",\"authors\":\"Qing Li, Steinar Evje\",\"doi\":\"10.1137/23m1556605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page C421-C447, August 2024. <br/> Abstract. In a recent work [Q. Li and S. Evje, Netw. Heterog. Media, 18 (2023), pp. 48–79], it was explored how to identify the unknown flux function in a one-dimensional scalar conservation law. Key ingredients are symbolic neural networks to represent the candidate flux functions, entropy-satisfying numerical schemes, and a proper combination of initial data. The purpose of this work is to extend this methodology to a two-dimensional scalar conservation law ([math]) [math]. Straightforward extension of the method from the 1D to the 2D problem results in poor identification of the unknown [math] and [math]. Relying on ideas from joint and alternating equations training, a learning strategy is designed that enables accurate identification of the flux functions, even when 2D observations are sparse. It involves an alternating flux training approach where a first set of candidate flux functions obtained from joint training is improved through an alternating direction-dependent training strategy. Numerical investigations demonstrate that the method can effectively identify the true underlying flux functions [math] and [math] in the general case when they are nonconvex and unequal.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1556605\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1556605","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 科学计算期刊》,第 46 卷第 4 期,第 C421-C447 页,2024 年 8 月。 摘要最近的一项研究 [Q. Li and S. Evje, Netw. Heterog. Media, 18 (2023), pp.其中的关键要素是表示候选通量函数的符号神经网络、满足熵的数值方案以及初始数据的适当组合。这项工作的目的是将这一方法扩展到二维标量守恒定律([math])[math]。将该方法从一维问题直接扩展到二维问题会导致对未知数[math]和[math]的识别不清。根据联合方程和交替方程训练的思想,我们设计了一种学习策略,即使在二维观测数据稀少的情况下,也能准确识别通量函数。它涉及一种交替通量训练方法,即通过交替方向相关训练策略改进从联合训练中获得的第一组候选通量函数。数值研究表明,在通量函数[math]和[math]非凸且不相等的一般情况下,该方法可以有效地识别真正的基本通量函数[math]和[math]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Alternating Flux Learning Method for Multidimensional Nonlinear Conservation Laws
SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page C421-C447, August 2024.
Abstract. In a recent work [Q. Li and S. Evje, Netw. Heterog. Media, 18 (2023), pp. 48–79], it was explored how to identify the unknown flux function in a one-dimensional scalar conservation law. Key ingredients are symbolic neural networks to represent the candidate flux functions, entropy-satisfying numerical schemes, and a proper combination of initial data. The purpose of this work is to extend this methodology to a two-dimensional scalar conservation law ([math]) [math]. Straightforward extension of the method from the 1D to the 2D problem results in poor identification of the unknown [math] and [math]. Relying on ideas from joint and alternating equations training, a learning strategy is designed that enables accurate identification of the flux functions, even when 2D observations are sparse. It involves an alternating flux training approach where a first set of candidate flux functions obtained from joint training is improved through an alternating direction-dependent training strategy. Numerical investigations demonstrate that the method can effectively identify the true underlying flux functions [math] and [math] in the general case when they are nonconvex and unequal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1