Celia Caballero-Cárdenas, Manuel Jesús Castro, Christophe Chalons, Tomás Morales de Luna, María Luz Muñoz-Ruiz
{"title":"浅水系统的半隐式完全精确均衡松弛方案","authors":"Celia Caballero-Cárdenas, Manuel Jesús Castro, Christophe Chalons, Tomás Morales de Luna, María Luz Muñoz-Ruiz","doi":"10.1137/23m1621289","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page A2503-A2527, August 2024. <br/> Abstract. This article focuses on the design of semi-implicit schemes that are fully well-balanced for the one-dimensional shallow water equations, that is, schemes that preserve all smooth steady states of the system and not just water-at-rest equilibria. The proposed methods outperform standard explicit schemes in the low-Froude regime, where the celerity is much larger than the fluid velocity, eliminating the need for a large number of iterations on large time intervals. In this work, splitting and relaxation techniques are combined in order to obtain fully well-balanced semi-implicit first and second order schemes. In contrast to recent Lagrangian-based approaches, this one allows the preservation of all the steady states while avoiding the complexities associated with Lagrangian formalism.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Semi-Implicit Fully Exactly Well-Balanced Relaxation Scheme for the Shallow Water System\",\"authors\":\"Celia Caballero-Cárdenas, Manuel Jesús Castro, Christophe Chalons, Tomás Morales de Luna, María Luz Muñoz-Ruiz\",\"doi\":\"10.1137/23m1621289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page A2503-A2527, August 2024. <br/> Abstract. This article focuses on the design of semi-implicit schemes that are fully well-balanced for the one-dimensional shallow water equations, that is, schemes that preserve all smooth steady states of the system and not just water-at-rest equilibria. The proposed methods outperform standard explicit schemes in the low-Froude regime, where the celerity is much larger than the fluid velocity, eliminating the need for a large number of iterations on large time intervals. In this work, splitting and relaxation techniques are combined in order to obtain fully well-balanced semi-implicit first and second order schemes. In contrast to recent Lagrangian-based approaches, this one allows the preservation of all the steady states while avoiding the complexities associated with Lagrangian formalism.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1621289\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1621289","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A Semi-Implicit Fully Exactly Well-Balanced Relaxation Scheme for the Shallow Water System
SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page A2503-A2527, August 2024. Abstract. This article focuses on the design of semi-implicit schemes that are fully well-balanced for the one-dimensional shallow water equations, that is, schemes that preserve all smooth steady states of the system and not just water-at-rest equilibria. The proposed methods outperform standard explicit schemes in the low-Froude regime, where the celerity is much larger than the fluid velocity, eliminating the need for a large number of iterations on large time intervals. In this work, splitting and relaxation techniques are combined in order to obtain fully well-balanced semi-implicit first and second order schemes. In contrast to recent Lagrangian-based approaches, this one allows the preservation of all the steady states while avoiding the complexities associated with Lagrangian formalism.