Celia Caballero-Cárdenas, Manuel Jesús Castro, Christophe Chalons, Tomás Morales de Luna, María Luz Muñoz-Ruiz
{"title":"浅水系统的半隐式完全精确均衡松弛方案","authors":"Celia Caballero-Cárdenas, Manuel Jesús Castro, Christophe Chalons, Tomás Morales de Luna, María Luz Muñoz-Ruiz","doi":"10.1137/23m1621289","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page A2503-A2527, August 2024. <br/> Abstract. This article focuses on the design of semi-implicit schemes that are fully well-balanced for the one-dimensional shallow water equations, that is, schemes that preserve all smooth steady states of the system and not just water-at-rest equilibria. The proposed methods outperform standard explicit schemes in the low-Froude regime, where the celerity is much larger than the fluid velocity, eliminating the need for a large number of iterations on large time intervals. In this work, splitting and relaxation techniques are combined in order to obtain fully well-balanced semi-implicit first and second order schemes. In contrast to recent Lagrangian-based approaches, this one allows the preservation of all the steady states while avoiding the complexities associated with Lagrangian formalism.","PeriodicalId":49526,"journal":{"name":"SIAM Journal on Scientific Computing","volume":"4 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Semi-Implicit Fully Exactly Well-Balanced Relaxation Scheme for the Shallow Water System\",\"authors\":\"Celia Caballero-Cárdenas, Manuel Jesús Castro, Christophe Chalons, Tomás Morales de Luna, María Luz Muñoz-Ruiz\",\"doi\":\"10.1137/23m1621289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page A2503-A2527, August 2024. <br/> Abstract. This article focuses on the design of semi-implicit schemes that are fully well-balanced for the one-dimensional shallow water equations, that is, schemes that preserve all smooth steady states of the system and not just water-at-rest equilibria. The proposed methods outperform standard explicit schemes in the low-Froude regime, where the celerity is much larger than the fluid velocity, eliminating the need for a large number of iterations on large time intervals. In this work, splitting and relaxation techniques are combined in order to obtain fully well-balanced semi-implicit first and second order schemes. In contrast to recent Lagrangian-based approaches, this one allows the preservation of all the steady states while avoiding the complexities associated with Lagrangian formalism.\",\"PeriodicalId\":49526,\"journal\":{\"name\":\"SIAM Journal on Scientific Computing\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Scientific Computing\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1621289\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Scientific Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1621289","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A Semi-Implicit Fully Exactly Well-Balanced Relaxation Scheme for the Shallow Water System
SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page A2503-A2527, August 2024. Abstract. This article focuses on the design of semi-implicit schemes that are fully well-balanced for the one-dimensional shallow water equations, that is, schemes that preserve all smooth steady states of the system and not just water-at-rest equilibria. The proposed methods outperform standard explicit schemes in the low-Froude regime, where the celerity is much larger than the fluid velocity, eliminating the need for a large number of iterations on large time intervals. In this work, splitting and relaxation techniques are combined in order to obtain fully well-balanced semi-implicit first and second order schemes. In contrast to recent Lagrangian-based approaches, this one allows the preservation of all the steady states while avoiding the complexities associated with Lagrangian formalism.
期刊介绍:
The purpose of SIAM Journal on Scientific Computing (SISC) is to advance computational methods for solving scientific and engineering problems.
SISC papers are classified into three categories:
1. Methods and Algorithms for Scientific Computing: Papers in this category may include theoretical analysis, provided that the relevance to applications in science and engineering is demonstrated. They should contain meaningful computational results and theoretical results or strong heuristics supporting the performance of new algorithms.
2. Computational Methods in Science and Engineering: Papers in this section will typically describe novel methodologies for solving a specific problem in computational science or engineering. They should contain enough information about the application to orient other computational scientists but should omit details of interest mainly to the applications specialist.
3. Software and High-Performance Computing: Papers in this category should concern the novel design and development of computational methods and high-quality software, parallel algorithms, high-performance computing issues, new architectures, data analysis, or visualization. The primary focus should be on computational methods that have potentially large impact for an important class of scientific or engineering problems.