Jianjun Ni, Yu Gu, Yang Gu, Yonghao Zhao, Pengfei Shi
{"title":"基于改进型深度双 Q 网络的电池能量有限的无人机覆盖路径规划","authors":"Jianjun Ni, Yu Gu, Yang Gu, Yonghao Zhao, Pengfei Shi","doi":"10.1007/s12555-023-0724-9","DOIUrl":null,"url":null,"abstract":"<p>In response to the increasingly complex problem of patrolling urban areas, the utilization of deep reinforcement learning algorithms for autonomous unmanned aerial vehicle (UAV) coverage path planning (CPP) has gradually become a research hotspot. CPP’s solution needs to consider several complex factors, including landing area, target area coverage and limited battery capacity. Consequently, based on incomplete environmental information, policy learned by sample inefficient deep reinforcement learning algorithms are prone to getting trapped in local optima. To enhance the quality of experience data, a novel reward is proposed to guide UAVs in efficiently traversing the target area under battery limitations. Subsequently, to improve the sample efficiency of deep reinforcement learning algorithms, this paper introduces a novel dynamic soft update method, incorporates the prioritized experience replay mechanism, and presents an improved deep double Q-network (IDDQN) algorithm. Finally, simulation experiments conducted on two different grid maps demonstrate that IDDQN outperforms DDQN significantly. Our method simultaneously enhances the algorithm’s sample efficiency and safety performance, thereby enabling UAVs to cover a larger number of target areas.</p>","PeriodicalId":54965,"journal":{"name":"International Journal of Control Automation and Systems","volume":"8 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"UAV Coverage Path Planning With Limited Battery Energy Based on Improved Deep Double Q-network\",\"authors\":\"Jianjun Ni, Yu Gu, Yang Gu, Yonghao Zhao, Pengfei Shi\",\"doi\":\"10.1007/s12555-023-0724-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In response to the increasingly complex problem of patrolling urban areas, the utilization of deep reinforcement learning algorithms for autonomous unmanned aerial vehicle (UAV) coverage path planning (CPP) has gradually become a research hotspot. CPP’s solution needs to consider several complex factors, including landing area, target area coverage and limited battery capacity. Consequently, based on incomplete environmental information, policy learned by sample inefficient deep reinforcement learning algorithms are prone to getting trapped in local optima. To enhance the quality of experience data, a novel reward is proposed to guide UAVs in efficiently traversing the target area under battery limitations. Subsequently, to improve the sample efficiency of deep reinforcement learning algorithms, this paper introduces a novel dynamic soft update method, incorporates the prioritized experience replay mechanism, and presents an improved deep double Q-network (IDDQN) algorithm. Finally, simulation experiments conducted on two different grid maps demonstrate that IDDQN outperforms DDQN significantly. Our method simultaneously enhances the algorithm’s sample efficiency and safety performance, thereby enabling UAVs to cover a larger number of target areas.</p>\",\"PeriodicalId\":54965,\"journal\":{\"name\":\"International Journal of Control Automation and Systems\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Control Automation and Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s12555-023-0724-9\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Control Automation and Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12555-023-0724-9","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
UAV Coverage Path Planning With Limited Battery Energy Based on Improved Deep Double Q-network
In response to the increasingly complex problem of patrolling urban areas, the utilization of deep reinforcement learning algorithms for autonomous unmanned aerial vehicle (UAV) coverage path planning (CPP) has gradually become a research hotspot. CPP’s solution needs to consider several complex factors, including landing area, target area coverage and limited battery capacity. Consequently, based on incomplete environmental information, policy learned by sample inefficient deep reinforcement learning algorithms are prone to getting trapped in local optima. To enhance the quality of experience data, a novel reward is proposed to guide UAVs in efficiently traversing the target area under battery limitations. Subsequently, to improve the sample efficiency of deep reinforcement learning algorithms, this paper introduces a novel dynamic soft update method, incorporates the prioritized experience replay mechanism, and presents an improved deep double Q-network (IDDQN) algorithm. Finally, simulation experiments conducted on two different grid maps demonstrate that IDDQN outperforms DDQN significantly. Our method simultaneously enhances the algorithm’s sample efficiency and safety performance, thereby enabling UAVs to cover a larger number of target areas.
期刊介绍:
International Journal of Control, Automation and Systems is a joint publication of the Institute of Control, Robotics and Systems (ICROS) and the Korean Institute of Electrical Engineers (KIEE).
The journal covers three closly-related research areas including control, automation, and systems.
The technical areas include
Control Theory
Control Applications
Robotics and Automation
Intelligent and Information Systems
The Journal addresses research areas focused on control, automation, and systems in electrical, mechanical, aerospace, chemical, and industrial engineering in order to create a strong synergy effect throughout the interdisciplinary research areas.