{"title":"改善机器人机械手跟踪控制性能的数据驱动控制方案:实验研究","authors":"Sang Deok Lee, Seul Jung","doi":"10.1007/s12555-023-0117-0","DOIUrl":null,"url":null,"abstract":"<p>This article presents a data-driven control application to robot manipulation for implementing the time-delayed control (TDC) algorithm. TDC scheme uses the previous information to cancel out all the dynamics except the inertial torque in robot manipulators. The accuracy of estimating the inertia matrix plays an important role in control performance as well as the stability of TDC. Necessary information for the time-delayed control is inertia and acceleration signals. Since selecting the constant inertia matrix is simple but concerned with the poor performance, better estimation is required. Based on the input and output data of a robot manipulator, necessary models are obtained by a recursive least squares (RLS) algorithm and those models are used for estimating acceleration signals by designing a state observer (SOB). Here the models of a robot arm are decoupled, linearized, and identified by RLS algorithm and the joint acceleration signals are identified by a state observer in on-line fashion. Combining RLS, SOB, and TDC yields RST scheme for a robot manipulator to improve the tracking control performance by providing solutions for TDC problems. Tracking control performances of a mobile manipulator by the RST scheme are empirically tested.</p>","PeriodicalId":54965,"journal":{"name":"International Journal of Control Automation and Systems","volume":"216 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Data-driven Control Scheme for Improving Tracking Control Performance of Robot Manipulators: Experimental Studies\",\"authors\":\"Sang Deok Lee, Seul Jung\",\"doi\":\"10.1007/s12555-023-0117-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This article presents a data-driven control application to robot manipulation for implementing the time-delayed control (TDC) algorithm. TDC scheme uses the previous information to cancel out all the dynamics except the inertial torque in robot manipulators. The accuracy of estimating the inertia matrix plays an important role in control performance as well as the stability of TDC. Necessary information for the time-delayed control is inertia and acceleration signals. Since selecting the constant inertia matrix is simple but concerned with the poor performance, better estimation is required. Based on the input and output data of a robot manipulator, necessary models are obtained by a recursive least squares (RLS) algorithm and those models are used for estimating acceleration signals by designing a state observer (SOB). Here the models of a robot arm are decoupled, linearized, and identified by RLS algorithm and the joint acceleration signals are identified by a state observer in on-line fashion. Combining RLS, SOB, and TDC yields RST scheme for a robot manipulator to improve the tracking control performance by providing solutions for TDC problems. Tracking control performances of a mobile manipulator by the RST scheme are empirically tested.</p>\",\"PeriodicalId\":54965,\"journal\":{\"name\":\"International Journal of Control Automation and Systems\",\"volume\":\"216 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Control Automation and Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s12555-023-0117-0\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Control Automation and Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12555-023-0117-0","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
A Data-driven Control Scheme for Improving Tracking Control Performance of Robot Manipulators: Experimental Studies
This article presents a data-driven control application to robot manipulation for implementing the time-delayed control (TDC) algorithm. TDC scheme uses the previous information to cancel out all the dynamics except the inertial torque in robot manipulators. The accuracy of estimating the inertia matrix plays an important role in control performance as well as the stability of TDC. Necessary information for the time-delayed control is inertia and acceleration signals. Since selecting the constant inertia matrix is simple but concerned with the poor performance, better estimation is required. Based on the input and output data of a robot manipulator, necessary models are obtained by a recursive least squares (RLS) algorithm and those models are used for estimating acceleration signals by designing a state observer (SOB). Here the models of a robot arm are decoupled, linearized, and identified by RLS algorithm and the joint acceleration signals are identified by a state observer in on-line fashion. Combining RLS, SOB, and TDC yields RST scheme for a robot manipulator to improve the tracking control performance by providing solutions for TDC problems. Tracking control performances of a mobile manipulator by the RST scheme are empirically tested.
期刊介绍:
International Journal of Control, Automation and Systems is a joint publication of the Institute of Control, Robotics and Systems (ICROS) and the Korean Institute of Electrical Engineers (KIEE).
The journal covers three closly-related research areas including control, automation, and systems.
The technical areas include
Control Theory
Control Applications
Robotics and Automation
Intelligent and Information Systems
The Journal addresses research areas focused on control, automation, and systems in electrical, mechanical, aerospace, chemical, and industrial engineering in order to create a strong synergy effect throughout the interdisciplinary research areas.