改善机器人机械手跟踪控制性能的数据驱动控制方案:实验研究

IF 2.5 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS International Journal of Control Automation and Systems Pub Date : 2024-08-02 DOI:10.1007/s12555-023-0117-0
Sang Deok Lee, Seul Jung
{"title":"改善机器人机械手跟踪控制性能的数据驱动控制方案:实验研究","authors":"Sang Deok Lee, Seul Jung","doi":"10.1007/s12555-023-0117-0","DOIUrl":null,"url":null,"abstract":"<p>This article presents a data-driven control application to robot manipulation for implementing the time-delayed control (TDC) algorithm. TDC scheme uses the previous information to cancel out all the dynamics except the inertial torque in robot manipulators. The accuracy of estimating the inertia matrix plays an important role in control performance as well as the stability of TDC. Necessary information for the time-delayed control is inertia and acceleration signals. Since selecting the constant inertia matrix is simple but concerned with the poor performance, better estimation is required. Based on the input and output data of a robot manipulator, necessary models are obtained by a recursive least squares (RLS) algorithm and those models are used for estimating acceleration signals by designing a state observer (SOB). Here the models of a robot arm are decoupled, linearized, and identified by RLS algorithm and the joint acceleration signals are identified by a state observer in on-line fashion. Combining RLS, SOB, and TDC yields RST scheme for a robot manipulator to improve the tracking control performance by providing solutions for TDC problems. Tracking control performances of a mobile manipulator by the RST scheme are empirically tested.</p>","PeriodicalId":54965,"journal":{"name":"International Journal of Control Automation and Systems","volume":"216 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Data-driven Control Scheme for Improving Tracking Control Performance of Robot Manipulators: Experimental Studies\",\"authors\":\"Sang Deok Lee, Seul Jung\",\"doi\":\"10.1007/s12555-023-0117-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This article presents a data-driven control application to robot manipulation for implementing the time-delayed control (TDC) algorithm. TDC scheme uses the previous information to cancel out all the dynamics except the inertial torque in robot manipulators. The accuracy of estimating the inertia matrix plays an important role in control performance as well as the stability of TDC. Necessary information for the time-delayed control is inertia and acceleration signals. Since selecting the constant inertia matrix is simple but concerned with the poor performance, better estimation is required. Based on the input and output data of a robot manipulator, necessary models are obtained by a recursive least squares (RLS) algorithm and those models are used for estimating acceleration signals by designing a state observer (SOB). Here the models of a robot arm are decoupled, linearized, and identified by RLS algorithm and the joint acceleration signals are identified by a state observer in on-line fashion. Combining RLS, SOB, and TDC yields RST scheme for a robot manipulator to improve the tracking control performance by providing solutions for TDC problems. Tracking control performances of a mobile manipulator by the RST scheme are empirically tested.</p>\",\"PeriodicalId\":54965,\"journal\":{\"name\":\"International Journal of Control Automation and Systems\",\"volume\":\"216 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Control Automation and Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s12555-023-0117-0\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Control Automation and Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12555-023-0117-0","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种应用于机器人操纵的数据驱动控制,用于实现延时控制(TDC)算法。TDC 方案利用先前的信息抵消机器人操纵器中除惯性力矩之外的所有动态。惯性矩阵的估计精度对 TDC 的控制性能和稳定性起着重要作用。延时控制的必要信息是惯性和加速度信号。恒定惯性矩阵的选择虽然简单,但性能较差,因此需要更好的估计。根据机器人机械手的输入和输出数据,通过递归最小二乘(RLS)算法获得必要的模型,并通过设计状态观测器(SOB)利用这些模型来估计加速度信号。在这里,机械臂的模型通过 RLS 算法解耦、线性化和识别,而关节加速度信号则通过状态观测器以在线方式识别。将 RLS、SOB 和 TDC 相结合,可为机器人机械手提供 RST 方案,通过提供 TDC 问题的解决方案来提高跟踪控制性能。利用 RST 方案对移动机械手的跟踪控制性能进行了实证测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Data-driven Control Scheme for Improving Tracking Control Performance of Robot Manipulators: Experimental Studies

This article presents a data-driven control application to robot manipulation for implementing the time-delayed control (TDC) algorithm. TDC scheme uses the previous information to cancel out all the dynamics except the inertial torque in robot manipulators. The accuracy of estimating the inertia matrix plays an important role in control performance as well as the stability of TDC. Necessary information for the time-delayed control is inertia and acceleration signals. Since selecting the constant inertia matrix is simple but concerned with the poor performance, better estimation is required. Based on the input and output data of a robot manipulator, necessary models are obtained by a recursive least squares (RLS) algorithm and those models are used for estimating acceleration signals by designing a state observer (SOB). Here the models of a robot arm are decoupled, linearized, and identified by RLS algorithm and the joint acceleration signals are identified by a state observer in on-line fashion. Combining RLS, SOB, and TDC yields RST scheme for a robot manipulator to improve the tracking control performance by providing solutions for TDC problems. Tracking control performances of a mobile manipulator by the RST scheme are empirically tested.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Control Automation and Systems
International Journal of Control Automation and Systems 工程技术-自动化与控制系统
CiteScore
5.80
自引率
21.90%
发文量
343
审稿时长
8.7 months
期刊介绍: International Journal of Control, Automation and Systems is a joint publication of the Institute of Control, Robotics and Systems (ICROS) and the Korean Institute of Electrical Engineers (KIEE). The journal covers three closly-related research areas including control, automation, and systems. The technical areas include Control Theory Control Applications Robotics and Automation Intelligent and Information Systems The Journal addresses research areas focused on control, automation, and systems in electrical, mechanical, aerospace, chemical, and industrial engineering in order to create a strong synergy effect throughout the interdisciplinary research areas.
期刊最新文献
The Dynamical Model and the Slithering Controller of Continuous Snakelike Robot on Smooth Surface Adaptive Back-stepping Control of Servo Systems With Asymmetric Dead Zone Optimal Stealthy Attack With Side Information Under the Energy Constraint on Remote State Estimation Finite-time Stabilization of Fractional-order Impulsive Switched Systems With Saturated Control Input Tracking Control Design for a Bilinear Control System With Unstable and Uncertain Internal Dynamics Using Adaptive Backstepping
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1