Yifan Bai, Björn Lindqvist, Samuel Nordström, Christoforos Kanellakis, George Nikolakopoulos
{"title":"基于集群的多机器人任务分配、规划和控制","authors":"Yifan Bai, Björn Lindqvist, Samuel Nordström, Christoforos Kanellakis, George Nikolakopoulos","doi":"10.1007/s12555-023-0745-4","DOIUrl":null,"url":null,"abstract":"<p>This paper presents a complete system architecture for multi-robot coordination for unbalanced task assignments, where a number of robots are supposed to visit and accomplish missions at different locations. The proposed method first clusters tasks into clusters according to the number of robots, then the assignment is done in the form of one-cluster-to-one-robot, followed by solving the traveling salesman problem (TSP) to determine the visiting order of tasks within each cluster. A nonlinear model predictive controller (NMPC) is designed for robots to navigate to their assigned tasks while avoiding colliding with other robots. Several simulations are conducted to evaluate the feasibility of the proposed architecture. Video examples of the simulations can be viewed at https://youtu.be/5C7zTnv2sfo and https://youtu.be/-JtSg5V2fTI?si=7PfzZbleOOsRdzRd. Besides, we compare the cluster-based assignment with a simulated annealing (SA) algorithm, one of the typical solutions for the multiple traveling salesman problem (mTSP), and the result reveals that with a similar optimization effect, the cluster-based assignment demonstrates a notable reduction in computation time. This efficiency becomes increasingly pronounced as the task-to-agent ratio grows.</p>","PeriodicalId":54965,"journal":{"name":"International Journal of Control Automation and Systems","volume":"45 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cluster-based Multi-robot Task Assignment, Planning, and Control\",\"authors\":\"Yifan Bai, Björn Lindqvist, Samuel Nordström, Christoforos Kanellakis, George Nikolakopoulos\",\"doi\":\"10.1007/s12555-023-0745-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper presents a complete system architecture for multi-robot coordination for unbalanced task assignments, where a number of robots are supposed to visit and accomplish missions at different locations. The proposed method first clusters tasks into clusters according to the number of robots, then the assignment is done in the form of one-cluster-to-one-robot, followed by solving the traveling salesman problem (TSP) to determine the visiting order of tasks within each cluster. A nonlinear model predictive controller (NMPC) is designed for robots to navigate to their assigned tasks while avoiding colliding with other robots. Several simulations are conducted to evaluate the feasibility of the proposed architecture. Video examples of the simulations can be viewed at https://youtu.be/5C7zTnv2sfo and https://youtu.be/-JtSg5V2fTI?si=7PfzZbleOOsRdzRd. Besides, we compare the cluster-based assignment with a simulated annealing (SA) algorithm, one of the typical solutions for the multiple traveling salesman problem (mTSP), and the result reveals that with a similar optimization effect, the cluster-based assignment demonstrates a notable reduction in computation time. This efficiency becomes increasingly pronounced as the task-to-agent ratio grows.</p>\",\"PeriodicalId\":54965,\"journal\":{\"name\":\"International Journal of Control Automation and Systems\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Control Automation and Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s12555-023-0745-4\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Control Automation and Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12555-023-0745-4","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Cluster-based Multi-robot Task Assignment, Planning, and Control
This paper presents a complete system architecture for multi-robot coordination for unbalanced task assignments, where a number of robots are supposed to visit and accomplish missions at different locations. The proposed method first clusters tasks into clusters according to the number of robots, then the assignment is done in the form of one-cluster-to-one-robot, followed by solving the traveling salesman problem (TSP) to determine the visiting order of tasks within each cluster. A nonlinear model predictive controller (NMPC) is designed for robots to navigate to their assigned tasks while avoiding colliding with other robots. Several simulations are conducted to evaluate the feasibility of the proposed architecture. Video examples of the simulations can be viewed at https://youtu.be/5C7zTnv2sfo and https://youtu.be/-JtSg5V2fTI?si=7PfzZbleOOsRdzRd. Besides, we compare the cluster-based assignment with a simulated annealing (SA) algorithm, one of the typical solutions for the multiple traveling salesman problem (mTSP), and the result reveals that with a similar optimization effect, the cluster-based assignment demonstrates a notable reduction in computation time. This efficiency becomes increasingly pronounced as the task-to-agent ratio grows.
期刊介绍:
International Journal of Control, Automation and Systems is a joint publication of the Institute of Control, Robotics and Systems (ICROS) and the Korean Institute of Electrical Engineers (KIEE).
The journal covers three closly-related research areas including control, automation, and systems.
The technical areas include
Control Theory
Control Applications
Robotics and Automation
Intelligent and Information Systems
The Journal addresses research areas focused on control, automation, and systems in electrical, mechanical, aerospace, chemical, and industrial engineering in order to create a strong synergy effect throughout the interdisciplinary research areas.