{"title":"检测时空变化点:广义相加模型方法","authors":"Michael J. Hollaway, Rebecca Killick","doi":"10.1007/s11222-024-10478-6","DOIUrl":null,"url":null,"abstract":"<p>The detection of changepoints in spatio-temporal datasets has been receiving increased focus in recent years and is utilised in a wide range of fields. With temporal data observed at different spatial locations, the current approach is typically to use univariate changepoint methods in a marginal sense with the detected changepoint being representative of a single location only. We present a spatio-temporal changepoint method that utilises a generalised additive model (GAM) dependent on the 2D spatial location and the observation time to account for the underlying spatio-temporal process. We use the full likelihood of the GAM in conjunction with the pruned linear exact time (PELT) changepoint search algorithm to detect multiple changepoints across spatial locations in a computationally efficient manner. When compared to a univariate marginal approach our method is shown to perform more efficiently in simulation studies at detecting true changepoints and demonstrates less evidence of overfitting. Furthermore, as the approach explicitly models spatio-temporal dependencies between spatial locations, any changepoints detected are common across the locations. We demonstrate an application of the method to an air quality dataset covering the COVID-19 lockdown in the United Kingdom.</p>","PeriodicalId":22058,"journal":{"name":"Statistics and Computing","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection of spatiotemporal changepoints: a generalised additive model approach\",\"authors\":\"Michael J. Hollaway, Rebecca Killick\",\"doi\":\"10.1007/s11222-024-10478-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The detection of changepoints in spatio-temporal datasets has been receiving increased focus in recent years and is utilised in a wide range of fields. With temporal data observed at different spatial locations, the current approach is typically to use univariate changepoint methods in a marginal sense with the detected changepoint being representative of a single location only. We present a spatio-temporal changepoint method that utilises a generalised additive model (GAM) dependent on the 2D spatial location and the observation time to account for the underlying spatio-temporal process. We use the full likelihood of the GAM in conjunction with the pruned linear exact time (PELT) changepoint search algorithm to detect multiple changepoints across spatial locations in a computationally efficient manner. When compared to a univariate marginal approach our method is shown to perform more efficiently in simulation studies at detecting true changepoints and demonstrates less evidence of overfitting. Furthermore, as the approach explicitly models spatio-temporal dependencies between spatial locations, any changepoints detected are common across the locations. We demonstrate an application of the method to an air quality dataset covering the COVID-19 lockdown in the United Kingdom.</p>\",\"PeriodicalId\":22058,\"journal\":{\"name\":\"Statistics and Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics and Computing\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11222-024-10478-6\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics and Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11222-024-10478-6","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Detection of spatiotemporal changepoints: a generalised additive model approach
The detection of changepoints in spatio-temporal datasets has been receiving increased focus in recent years and is utilised in a wide range of fields. With temporal data observed at different spatial locations, the current approach is typically to use univariate changepoint methods in a marginal sense with the detected changepoint being representative of a single location only. We present a spatio-temporal changepoint method that utilises a generalised additive model (GAM) dependent on the 2D spatial location and the observation time to account for the underlying spatio-temporal process. We use the full likelihood of the GAM in conjunction with the pruned linear exact time (PELT) changepoint search algorithm to detect multiple changepoints across spatial locations in a computationally efficient manner. When compared to a univariate marginal approach our method is shown to perform more efficiently in simulation studies at detecting true changepoints and demonstrates less evidence of overfitting. Furthermore, as the approach explicitly models spatio-temporal dependencies between spatial locations, any changepoints detected are common across the locations. We demonstrate an application of the method to an air quality dataset covering the COVID-19 lockdown in the United Kingdom.
期刊介绍:
Statistics and Computing is a bi-monthly refereed journal which publishes papers covering the range of the interface between the statistical and computing sciences.
In particular, it addresses the use of statistical concepts in computing science, for example in machine learning, computer vision and data analytics, as well as the use of computers in data modelling, prediction and analysis. Specific topics which are covered include: techniques for evaluating analytically intractable problems such as bootstrap resampling, Markov chain Monte Carlo, sequential Monte Carlo, approximate Bayesian computation, search and optimization methods, stochastic simulation and Monte Carlo, graphics, computer environments, statistical approaches to software errors, information retrieval, machine learning, statistics of databases and database technology, huge data sets and big data analytics, computer algebra, graphical models, image processing, tomography, inverse problems and uncertainty quantification.
In addition, the journal contains original research reports, authoritative review papers, discussed papers, and occasional special issues on particular topics or carrying proceedings of relevant conferences. Statistics and Computing also publishes book review and software review sections.