{"title":"用于高效光电阴极的 Na2KSb/CsxSb 接口工程","authors":"S.A. Rozhkov, V.V. Bakin, V.S. Rusetsky, D.A. Kustov, V.A. Golyashov, A.Yu. Demin, H.E. Scheibler, V.L. Alperovich, O.E. Tereshchenko","doi":"10.1103/physrevapplied.22.024008","DOIUrl":null,"url":null,"abstract":"Optical and photoemission measurements were performed on alkali antimonide <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>Na</mi><mn>2</mn></msub><mi>KSb</mi></math> and <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>Na</mi><mn>2</mn></msub><mi>KSb</mi><mo>/</mo><msub><mi>Cs</mi><mi>x</mi></msub><mi>Sb</mi></math> photocathodes in order to determine their energy-band diagrams, elucidate the photoemission pathways, and explore the options for interface engineering in order to reach high quantum efficiencies of the photocathodes. This study is motivated by the recent discovery of optical orientation in <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>Na</mi><mn>2</mn></msub><mi>KSb</mi></math> and emission of spin-polarized electrons from <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>Na</mi><mn>2</mn></msub><mi>KSb</mi><mo>/</mo><msub><mi>Cs</mi><mi>x</mi></msub><mi>Sb</mi></math> photocathodes [V.S. Rusetsky <i>et al.</i>, Phys. Rev. Lett. <b>129</b>, 166802 (2022)]. We have shown that the band gap <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>E</mi><mi>g</mi></msub></math> of <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>Na</mi><mn>2</mn></msub><mi>KSb</mi></math> at <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>T</mi><mo>=</mo><mn>295</mn></math> K lies within the range of 1.40–1.44 eV. The <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>Na</mi><mn>2</mn></msub><mi>KSb</mi></math> surface activation by the deposition of <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Cs</mi></math> and <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Sb</mi></math> results in effective electron affinity decrease by approximately 0.37 eV, and in an increase of the quantum efficiency up to 0.2 electrons per incident photon. The analysis of longitudinal energy distribution curves (EDCs) proves that the surface of activated <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>Na</mi><mn>2</mn></msub><mi>KSb</mi><mo>/</mo><msub><mi>Cs</mi><mi>x</mi></msub><mi>Sb</mi></math> photocathodes have negative effective electron affinity of approximately <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>−</mo><mn>0.1</mn></math> and <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>−</mo><mn>0.25</mn></math> eV at <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>T</mi><mo>=</mo><mn>295</mn></math> and 80 K, respectively. EDC measurements under increasing photon energy <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ℏ</mi><mi>ω</mi></math> demonstrate the transition of photoemission pathway from the surface states’ photoionization at <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ℏ</mi><mi>ω</mi><mo><</mo><msub><mi>E</mi><mi>g</mi></msub></math> to the emission from the conduction-band bottom at <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ℏ</mi><mi>ω</mi><mo>≈</mo><msub><mi>E</mi><mi>g</mi></msub></math> and from the states with high kinetic energy in the conduction band at <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ℏ</mi><mi>ω</mi><mo>></mo><msub><mi>E</mi><mi>g</mi></msub></math>. EDCs measured at 80 K reveal a highly directional photoelectron emission from the <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>Na</mi><mn>2</mn></msub><mi>KSb</mi><mo>/</mo><msub><mi>Cs</mi><mi>x</mi></msub><mi>Sb</mi></math> photocathode, as compared to the <i>p</i>-<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>Ga</mi><mi>As</mi></mrow></math>(<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Cs</mi></math>,<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mrow><mi mathvariant=\"normal\">O</mi></mrow></mrow></math>) photocathode. This fact, along with the observed significant, by an order of magnitude, increase in the photoluminescence intensity under the <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>Na</mi><mn>2</mn></msub><mi>KSb</mi></math> surface activation by <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Cs</mi></math> and <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Sb</mi></math>, indicates relatively weak diffuse scattering in the “quasiepitaxial” <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>Cs</mi><mi>x</mi></msub><mi>Sb</mi></math> activation layer of a <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>Na</mi><mn>2</mn></msub><mi>KSb</mi><mo>/</mo><msub><mi>Cs</mi><mi>x</mi></msub><mi>Sb</mi></math> photocathode, compared to strong scattering in the amorphous (<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Cs</mi></math>,<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mrow><mi mathvariant=\"normal\">O</mi></mrow></mrow></math>) activation layer of a <i>p</i>-<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>Ga</mi><mi>As</mi></mrow></math>(<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Cs</mi></math>,<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mrow><mi mathvariant=\"normal\">O</mi></mrow></mrow></math>) photocathode.","PeriodicalId":20109,"journal":{"name":"Physical Review Applied","volume":"190 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Na2KSb/CsxSb interface engineering for high-efficiency photocathodes\",\"authors\":\"S.A. Rozhkov, V.V. Bakin, V.S. Rusetsky, D.A. Kustov, V.A. Golyashov, A.Yu. Demin, H.E. Scheibler, V.L. Alperovich, O.E. Tereshchenko\",\"doi\":\"10.1103/physrevapplied.22.024008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optical and photoemission measurements were performed on alkali antimonide <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>Na</mi><mn>2</mn></msub><mi>KSb</mi></math> and <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>Na</mi><mn>2</mn></msub><mi>KSb</mi><mo>/</mo><msub><mi>Cs</mi><mi>x</mi></msub><mi>Sb</mi></math> photocathodes in order to determine their energy-band diagrams, elucidate the photoemission pathways, and explore the options for interface engineering in order to reach high quantum efficiencies of the photocathodes. This study is motivated by the recent discovery of optical orientation in <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>Na</mi><mn>2</mn></msub><mi>KSb</mi></math> and emission of spin-polarized electrons from <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>Na</mi><mn>2</mn></msub><mi>KSb</mi><mo>/</mo><msub><mi>Cs</mi><mi>x</mi></msub><mi>Sb</mi></math> photocathodes [V.S. Rusetsky <i>et al.</i>, Phys. Rev. Lett. <b>129</b>, 166802 (2022)]. We have shown that the band gap <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>E</mi><mi>g</mi></msub></math> of <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>Na</mi><mn>2</mn></msub><mi>KSb</mi></math> at <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>T</mi><mo>=</mo><mn>295</mn></math> K lies within the range of 1.40–1.44 eV. The <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>Na</mi><mn>2</mn></msub><mi>KSb</mi></math> surface activation by the deposition of <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>Cs</mi></math> and <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>Sb</mi></math> results in effective electron affinity decrease by approximately 0.37 eV, and in an increase of the quantum efficiency up to 0.2 electrons per incident photon. The analysis of longitudinal energy distribution curves (EDCs) proves that the surface of activated <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>Na</mi><mn>2</mn></msub><mi>KSb</mi><mo>/</mo><msub><mi>Cs</mi><mi>x</mi></msub><mi>Sb</mi></math> photocathodes have negative effective electron affinity of approximately <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mo>−</mo><mn>0.1</mn></math> and <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mo>−</mo><mn>0.25</mn></math> eV at <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>T</mi><mo>=</mo><mn>295</mn></math> and 80 K, respectively. EDC measurements under increasing photon energy <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>ℏ</mi><mi>ω</mi></math> demonstrate the transition of photoemission pathway from the surface states’ photoionization at <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>ℏ</mi><mi>ω</mi><mo><</mo><msub><mi>E</mi><mi>g</mi></msub></math> to the emission from the conduction-band bottom at <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>ℏ</mi><mi>ω</mi><mo>≈</mo><msub><mi>E</mi><mi>g</mi></msub></math> and from the states with high kinetic energy in the conduction band at <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>ℏ</mi><mi>ω</mi><mo>></mo><msub><mi>E</mi><mi>g</mi></msub></math>. EDCs measured at 80 K reveal a highly directional photoelectron emission from the <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>Na</mi><mn>2</mn></msub><mi>KSb</mi><mo>/</mo><msub><mi>Cs</mi><mi>x</mi></msub><mi>Sb</mi></math> photocathode, as compared to the <i>p</i>-<math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>Ga</mi><mi>As</mi></mrow></math>(<math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>Cs</mi></math>,<math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mrow><mi mathvariant=\\\"normal\\\">O</mi></mrow></mrow></math>) photocathode. This fact, along with the observed significant, by an order of magnitude, increase in the photoluminescence intensity under the <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>Na</mi><mn>2</mn></msub><mi>KSb</mi></math> surface activation by <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>Cs</mi></math> and <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>Sb</mi></math>, indicates relatively weak diffuse scattering in the “quasiepitaxial” <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>Cs</mi><mi>x</mi></msub><mi>Sb</mi></math> activation layer of a <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>Na</mi><mn>2</mn></msub><mi>KSb</mi><mo>/</mo><msub><mi>Cs</mi><mi>x</mi></msub><mi>Sb</mi></math> photocathode, compared to strong scattering in the amorphous (<math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>Cs</mi></math>,<math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mrow><mi mathvariant=\\\"normal\\\">O</mi></mrow></mrow></math>) activation layer of a <i>p</i>-<math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>Ga</mi><mi>As</mi></mrow></math>(<math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>Cs</mi></math>,<math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mrow><mi mathvariant=\\\"normal\\\">O</mi></mrow></mrow></math>) photocathode.\",\"PeriodicalId\":20109,\"journal\":{\"name\":\"Physical Review Applied\",\"volume\":\"190 1\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Applied\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevapplied.22.024008\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Applied","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevapplied.22.024008","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
我们对碱锑化 Na2KSb 和 Na2KSb/CsxSb 光阴极进行了光学和光发射测量,以确定它们的能带图,阐明光发射途径,并探索界面工程选项,从而实现光阴极的高量子效率。这项研究的动机是最近在 Na2KSb 中发现的光学取向以及 Na2KSb/CsxSb 光阴极发射的自旋极化电子[V.S. Rusetsky 等人,Phys. Rev. Lett.我们已经证明,在 T=295 K 时,Na2KSb 的带隙 Eg 在 1.40-1.44 eV 范围内。通过沉积铯和锑对 Na2KSb 表面进行活化,有效电子亲和力降低了约 0.37 eV,量子效率提高到每入射光子 0.2 个电子。纵向能量分布曲线(EDC)分析表明,活化的 Na2KSb/CsxSb 光阴极表面在 T=295 和 80 K 时的有效电子亲和力分别为负约 -0.1 和 -0.25 eV。在光子能量ℏω不断增加的条件下进行的 EDC 测量表明,光发射途径从表面态在ℏω<Eg 处的光离子化过渡到了ℏω≈Eg 处从传导带底部发射,以及ℏω>Eg 处从传导带中的高动能态发射。与 p-砷化镓(Cs,O)光电阴极相比,在 80 K 条件下测量的 EDC 表明 Na2KSb/CsxSb 光电阴极的光电子发射具有高度的方向性。这一事实以及在 Na2KSb 表面被铯和锑活化的情况下观察到的光致发光强度的显著增加(数量级)表明,与 p-GaAs(Cs,O)光电阴极的非晶态(Cs,O)活化层中的强散射相比,Na2KSb/CsxSb 光电阴极的 "准pitaxial "CsxSb 活化层中的扩散散射相对较弱。
Na2KSb/CsxSb interface engineering for high-efficiency photocathodes
Optical and photoemission measurements were performed on alkali antimonide and photocathodes in order to determine their energy-band diagrams, elucidate the photoemission pathways, and explore the options for interface engineering in order to reach high quantum efficiencies of the photocathodes. This study is motivated by the recent discovery of optical orientation in and emission of spin-polarized electrons from photocathodes [V.S. Rusetsky et al., Phys. Rev. Lett. 129, 166802 (2022)]. We have shown that the band gap of at K lies within the range of 1.40–1.44 eV. The surface activation by the deposition of and results in effective electron affinity decrease by approximately 0.37 eV, and in an increase of the quantum efficiency up to 0.2 electrons per incident photon. The analysis of longitudinal energy distribution curves (EDCs) proves that the surface of activated photocathodes have negative effective electron affinity of approximately and eV at and 80 K, respectively. EDC measurements under increasing photon energy demonstrate the transition of photoemission pathway from the surface states’ photoionization at to the emission from the conduction-band bottom at and from the states with high kinetic energy in the conduction band at . EDCs measured at 80 K reveal a highly directional photoelectron emission from the photocathode, as compared to the p-(,) photocathode. This fact, along with the observed significant, by an order of magnitude, increase in the photoluminescence intensity under the surface activation by and , indicates relatively weak diffuse scattering in the “quasiepitaxial” activation layer of a photocathode, compared to strong scattering in the amorphous (,) activation layer of a p-(,) photocathode.
期刊介绍:
Physical Review Applied (PRApplied) publishes high-quality papers that bridge the gap between engineering and physics, and between current and future technologies. PRApplied welcomes papers from both the engineering and physics communities, in academia and industry.
PRApplied focuses on topics including:
Biophysics, bioelectronics, and biomedical engineering,
Device physics,
Electronics,
Technology to harvest, store, and transmit energy, focusing on renewable energy technologies,
Geophysics and space science,
Industrial physics,
Magnetism and spintronics,
Metamaterials,
Microfluidics,
Nonlinear dynamics and pattern formation in natural or manufactured systems,
Nanoscience and nanotechnology,
Optics, optoelectronics, photonics, and photonic devices,
Quantum information processing, both algorithms and hardware,
Soft matter physics, including granular and complex fluids and active matter.