用于高效光电阴极的 Na2KSb/CsxSb 接口工程

IF 3.8 2区 物理与天体物理 Q2 PHYSICS, APPLIED Physical Review Applied Pub Date : 2024-08-02 DOI:10.1103/physrevapplied.22.024008
S.A. Rozhkov, V.V. Bakin, V.S. Rusetsky, D.A. Kustov, V.A. Golyashov, A.Yu. Demin, H.E. Scheibler, V.L. Alperovich, O.E. Tereshchenko
{"title":"用于高效光电阴极的 Na2KSb/CsxSb 接口工程","authors":"S.A. Rozhkov, V.V. Bakin, V.S. Rusetsky, D.A. Kustov, V.A. Golyashov, A.Yu. Demin, H.E. Scheibler, V.L. Alperovich, O.E. Tereshchenko","doi":"10.1103/physrevapplied.22.024008","DOIUrl":null,"url":null,"abstract":"Optical and photoemission measurements were performed on alkali antimonide <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>Na</mi><mn>2</mn></msub><mi>KSb</mi></math> and <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>Na</mi><mn>2</mn></msub><mi>KSb</mi><mo>/</mo><msub><mi>Cs</mi><mi>x</mi></msub><mi>Sb</mi></math> photocathodes in order to determine their energy-band diagrams, elucidate the photoemission pathways, and explore the options for interface engineering in order to reach high quantum efficiencies of the photocathodes. This study is motivated by the recent discovery of optical orientation in <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>Na</mi><mn>2</mn></msub><mi>KSb</mi></math> and emission of spin-polarized electrons from <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>Na</mi><mn>2</mn></msub><mi>KSb</mi><mo>/</mo><msub><mi>Cs</mi><mi>x</mi></msub><mi>Sb</mi></math> photocathodes [V.S. Rusetsky <i>et al.</i>, Phys. Rev. Lett. <b>129</b>, 166802 (2022)]. We have shown that the band gap <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>E</mi><mi>g</mi></msub></math> of <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>Na</mi><mn>2</mn></msub><mi>KSb</mi></math> at <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>T</mi><mo>=</mo><mn>295</mn></math> K lies within the range of 1.40–1.44 eV. The <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>Na</mi><mn>2</mn></msub><mi>KSb</mi></math> surface activation by the deposition of <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Cs</mi></math> and <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Sb</mi></math> results in effective electron affinity decrease by approximately 0.37 eV, and in an increase of the quantum efficiency up to 0.2 electrons per incident photon. The analysis of longitudinal energy distribution curves (EDCs) proves that the surface of activated <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>Na</mi><mn>2</mn></msub><mi>KSb</mi><mo>/</mo><msub><mi>Cs</mi><mi>x</mi></msub><mi>Sb</mi></math> photocathodes have negative effective electron affinity of approximately <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>−</mo><mn>0.1</mn></math> and <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>−</mo><mn>0.25</mn></math> eV at <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>T</mi><mo>=</mo><mn>295</mn></math> and 80 K, respectively. EDC measurements under increasing photon energy <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ℏ</mi><mi>ω</mi></math> demonstrate the transition of photoemission pathway from the surface states’ photoionization at <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ℏ</mi><mi>ω</mi><mo>&lt;</mo><msub><mi>E</mi><mi>g</mi></msub></math> to the emission from the conduction-band bottom at <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ℏ</mi><mi>ω</mi><mo>≈</mo><msub><mi>E</mi><mi>g</mi></msub></math> and from the states with high kinetic energy in the conduction band at <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ℏ</mi><mi>ω</mi><mo>&gt;</mo><msub><mi>E</mi><mi>g</mi></msub></math>. EDCs measured at 80 K reveal a highly directional photoelectron emission from the <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>Na</mi><mn>2</mn></msub><mi>KSb</mi><mo>/</mo><msub><mi>Cs</mi><mi>x</mi></msub><mi>Sb</mi></math> photocathode, as compared to the <i>p</i>-<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>Ga</mi><mi>As</mi></mrow></math>(<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Cs</mi></math>,<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mrow><mi mathvariant=\"normal\">O</mi></mrow></mrow></math>) photocathode. This fact, along with the observed significant, by an order of magnitude, increase in the photoluminescence intensity under the <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>Na</mi><mn>2</mn></msub><mi>KSb</mi></math> surface activation by <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Cs</mi></math> and <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Sb</mi></math>, indicates relatively weak diffuse scattering in the “quasiepitaxial” <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>Cs</mi><mi>x</mi></msub><mi>Sb</mi></math> activation layer of a <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>Na</mi><mn>2</mn></msub><mi>KSb</mi><mo>/</mo><msub><mi>Cs</mi><mi>x</mi></msub><mi>Sb</mi></math> photocathode, compared to strong scattering in the amorphous (<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Cs</mi></math>,<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mrow><mi mathvariant=\"normal\">O</mi></mrow></mrow></math>) activation layer of a <i>p</i>-<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>Ga</mi><mi>As</mi></mrow></math>(<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Cs</mi></math>,<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mrow><mi mathvariant=\"normal\">O</mi></mrow></mrow></math>) photocathode.","PeriodicalId":20109,"journal":{"name":"Physical Review Applied","volume":"190 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Na2KSb/CsxSb interface engineering for high-efficiency photocathodes\",\"authors\":\"S.A. Rozhkov, V.V. Bakin, V.S. Rusetsky, D.A. Kustov, V.A. Golyashov, A.Yu. Demin, H.E. Scheibler, V.L. Alperovich, O.E. Tereshchenko\",\"doi\":\"10.1103/physrevapplied.22.024008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optical and photoemission measurements were performed on alkali antimonide <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>Na</mi><mn>2</mn></msub><mi>KSb</mi></math> and <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>Na</mi><mn>2</mn></msub><mi>KSb</mi><mo>/</mo><msub><mi>Cs</mi><mi>x</mi></msub><mi>Sb</mi></math> photocathodes in order to determine their energy-band diagrams, elucidate the photoemission pathways, and explore the options for interface engineering in order to reach high quantum efficiencies of the photocathodes. This study is motivated by the recent discovery of optical orientation in <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>Na</mi><mn>2</mn></msub><mi>KSb</mi></math> and emission of spin-polarized electrons from <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>Na</mi><mn>2</mn></msub><mi>KSb</mi><mo>/</mo><msub><mi>Cs</mi><mi>x</mi></msub><mi>Sb</mi></math> photocathodes [V.S. Rusetsky <i>et al.</i>, Phys. Rev. Lett. <b>129</b>, 166802 (2022)]. We have shown that the band gap <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>E</mi><mi>g</mi></msub></math> of <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>Na</mi><mn>2</mn></msub><mi>KSb</mi></math> at <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>T</mi><mo>=</mo><mn>295</mn></math> K lies within the range of 1.40–1.44 eV. The <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>Na</mi><mn>2</mn></msub><mi>KSb</mi></math> surface activation by the deposition of <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>Cs</mi></math> and <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>Sb</mi></math> results in effective electron affinity decrease by approximately 0.37 eV, and in an increase of the quantum efficiency up to 0.2 electrons per incident photon. The analysis of longitudinal energy distribution curves (EDCs) proves that the surface of activated <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>Na</mi><mn>2</mn></msub><mi>KSb</mi><mo>/</mo><msub><mi>Cs</mi><mi>x</mi></msub><mi>Sb</mi></math> photocathodes have negative effective electron affinity of approximately <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mo>−</mo><mn>0.1</mn></math> and <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mo>−</mo><mn>0.25</mn></math> eV at <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>T</mi><mo>=</mo><mn>295</mn></math> and 80 K, respectively. EDC measurements under increasing photon energy <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>ℏ</mi><mi>ω</mi></math> demonstrate the transition of photoemission pathway from the surface states’ photoionization at <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>ℏ</mi><mi>ω</mi><mo>&lt;</mo><msub><mi>E</mi><mi>g</mi></msub></math> to the emission from the conduction-band bottom at <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>ℏ</mi><mi>ω</mi><mo>≈</mo><msub><mi>E</mi><mi>g</mi></msub></math> and from the states with high kinetic energy in the conduction band at <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>ℏ</mi><mi>ω</mi><mo>&gt;</mo><msub><mi>E</mi><mi>g</mi></msub></math>. EDCs measured at 80 K reveal a highly directional photoelectron emission from the <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>Na</mi><mn>2</mn></msub><mi>KSb</mi><mo>/</mo><msub><mi>Cs</mi><mi>x</mi></msub><mi>Sb</mi></math> photocathode, as compared to the <i>p</i>-<math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>Ga</mi><mi>As</mi></mrow></math>(<math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>Cs</mi></math>,<math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mrow><mi mathvariant=\\\"normal\\\">O</mi></mrow></mrow></math>) photocathode. This fact, along with the observed significant, by an order of magnitude, increase in the photoluminescence intensity under the <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>Na</mi><mn>2</mn></msub><mi>KSb</mi></math> surface activation by <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>Cs</mi></math> and <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>Sb</mi></math>, indicates relatively weak diffuse scattering in the “quasiepitaxial” <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>Cs</mi><mi>x</mi></msub><mi>Sb</mi></math> activation layer of a <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>Na</mi><mn>2</mn></msub><mi>KSb</mi><mo>/</mo><msub><mi>Cs</mi><mi>x</mi></msub><mi>Sb</mi></math> photocathode, compared to strong scattering in the amorphous (<math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>Cs</mi></math>,<math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mrow><mi mathvariant=\\\"normal\\\">O</mi></mrow></mrow></math>) activation layer of a <i>p</i>-<math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>Ga</mi><mi>As</mi></mrow></math>(<math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>Cs</mi></math>,<math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mrow><mi mathvariant=\\\"normal\\\">O</mi></mrow></mrow></math>) photocathode.\",\"PeriodicalId\":20109,\"journal\":{\"name\":\"Physical Review Applied\",\"volume\":\"190 1\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Applied\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevapplied.22.024008\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Applied","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevapplied.22.024008","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们对碱锑化 Na2KSb 和 Na2KSb/CsxSb 光阴极进行了光学和光发射测量,以确定它们的能带图,阐明光发射途径,并探索界面工程选项,从而实现光阴极的高量子效率。这项研究的动机是最近在 Na2KSb 中发现的光学取向以及 Na2KSb/CsxSb 光阴极发射的自旋极化电子[V.S. Rusetsky 等人,Phys. Rev. Lett.我们已经证明,在 T=295 K 时,Na2KSb 的带隙 Eg 在 1.40-1.44 eV 范围内。通过沉积铯和锑对 Na2KSb 表面进行活化,有效电子亲和力降低了约 0.37 eV,量子效率提高到每入射光子 0.2 个电子。纵向能量分布曲线(EDC)分析表明,活化的 Na2KSb/CsxSb 光阴极表面在 T=295 和 80 K 时的有效电子亲和力分别为负约 -0.1 和 -0.25 eV。在光子能量ℏω不断增加的条件下进行的 EDC 测量表明,光发射途径从表面态在ℏω<Eg 处的光离子化过渡到了ℏω≈Eg 处从传导带底部发射,以及ℏω>Eg 处从传导带中的高动能态发射。与 p-砷化镓(Cs,O)光电阴极相比,在 80 K 条件下测量的 EDC 表明 Na2KSb/CsxSb 光电阴极的光电子发射具有高度的方向性。这一事实以及在 Na2KSb 表面被铯和锑活化的情况下观察到的光致发光强度的显著增加(数量级)表明,与 p-GaAs(Cs,O)光电阴极的非晶态(Cs,O)活化层中的强散射相比,Na2KSb/CsxSb 光电阴极的 "准pitaxial "CsxSb 活化层中的扩散散射相对较弱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Na2KSb/CsxSb interface engineering for high-efficiency photocathodes
Optical and photoemission measurements were performed on alkali antimonide Na2KSb and Na2KSb/CsxSb photocathodes in order to determine their energy-band diagrams, elucidate the photoemission pathways, and explore the options for interface engineering in order to reach high quantum efficiencies of the photocathodes. This study is motivated by the recent discovery of optical orientation in Na2KSb and emission of spin-polarized electrons from Na2KSb/CsxSb photocathodes [V.S. Rusetsky et al., Phys. Rev. Lett. 129, 166802 (2022)]. We have shown that the band gap Eg of Na2KSb at T=295 K lies within the range of 1.40–1.44 eV. The Na2KSb surface activation by the deposition of Cs and Sb results in effective electron affinity decrease by approximately 0.37 eV, and in an increase of the quantum efficiency up to 0.2 electrons per incident photon. The analysis of longitudinal energy distribution curves (EDCs) proves that the surface of activated Na2KSb/CsxSb photocathodes have negative effective electron affinity of approximately 0.1 and 0.25 eV at T=295 and 80 K, respectively. EDC measurements under increasing photon energy ω demonstrate the transition of photoemission pathway from the surface states’ photoionization at ω<Eg to the emission from the conduction-band bottom at ωEg and from the states with high kinetic energy in the conduction band at ω>Eg. EDCs measured at 80 K reveal a highly directional photoelectron emission from the Na2KSb/CsxSb photocathode, as compared to the p-GaAs(Cs,O) photocathode. This fact, along with the observed significant, by an order of magnitude, increase in the photoluminescence intensity under the Na2KSb surface activation by Cs and Sb, indicates relatively weak diffuse scattering in the “quasiepitaxial” CsxSb activation layer of a Na2KSb/CsxSb photocathode, compared to strong scattering in the amorphous (Cs,O) activation layer of a p-GaAs(Cs,O) photocathode.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review Applied
Physical Review Applied PHYSICS, APPLIED-
CiteScore
7.80
自引率
8.70%
发文量
760
审稿时长
2.5 months
期刊介绍: Physical Review Applied (PRApplied) publishes high-quality papers that bridge the gap between engineering and physics, and between current and future technologies. PRApplied welcomes papers from both the engineering and physics communities, in academia and industry. PRApplied focuses on topics including: Biophysics, bioelectronics, and biomedical engineering, Device physics, Electronics, Technology to harvest, store, and transmit energy, focusing on renewable energy technologies, Geophysics and space science, Industrial physics, Magnetism and spintronics, Metamaterials, Microfluidics, Nonlinear dynamics and pattern formation in natural or manufactured systems, Nanoscience and nanotechnology, Optics, optoelectronics, photonics, and photonic devices, Quantum information processing, both algorithms and hardware, Soft matter physics, including granular and complex fluids and active matter.
期刊最新文献
Nonreciprocity of surface acoustic waves coupled to spin waves in a ferromagnetic bilayer with noncollinear layer magnetizations Experimental demonstration of deep-learning-enabled adaptive optics Power-stabilized 3-W blue laser locked to the 420-nm transition in rubidium Control of threshold voltages in Si/Si0.7Ge0.3 quantum devices via optical illumination Static quantum dot on a large potential hilltop for generating and analyzing hot electrons in the quantum Hall regime
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1