OTCliM:利用梯度提升技术生成光学湍流强度($C_n^2$)的近地表气候图

Maximilian Pierzyna, Sukanta Basu, Rudolf Saathof
{"title":"OTCliM:利用梯度提升技术生成光学湍流强度($C_n^2$)的近地表气候图","authors":"Maximilian Pierzyna, Sukanta Basu, Rudolf Saathof","doi":"arxiv-2408.00520","DOIUrl":null,"url":null,"abstract":"This study introduces OTCliM (Optical Turbulence Climatology using Machine\nlearning), a novel approach for deriving comprehensive climatologies of\natmospheric optical turbulence strength ($C_n^2$) using gradient boosting\nmachines. OTCliM addresses the challenge of efficiently obtaining reliable\nsite-specific $C_n^2$ climatologies, crucial for ground-based astronomy and\nfree-space optical communication. Using gradient boosting machines and global\nreanalysis data, OTCliM extrapolates one year of measured $C_n^2$ into a\nmulti-year time series. We assess OTCliM's performance using $C_n^2$ data from\n17 diverse stations in New York State, evaluating temporal extrapolation\ncapabilities and geographical generalization. Our results demonstrate accurate\npredictions of four held-out years of $C_n^2$ across various sites, including\ncomplex urban environments, outperforming traditional analytical models.\nNon-urban models also show good geographical generalization compared to urban\nmodels, which captured non-general site-specific dependencies. A feature\nimportance analysis confirms the physical consistency of the trained models. It\nalso indicates the potential to uncover new insights into the physical\nprocesses governing $C_n^2$ from data. OTCliM's ability to derive reliable\n$C_n^2$ climatologies from just one year of observations can potentially reduce\nresources required for future site surveys or enable studies for additional\nsites with the same resources.","PeriodicalId":501166,"journal":{"name":"arXiv - PHYS - Atmospheric and Oceanic Physics","volume":"217 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"OTCliM: generating a near-surface climatology of optical turbulence strength ($C_n^2$) using gradient boosting\",\"authors\":\"Maximilian Pierzyna, Sukanta Basu, Rudolf Saathof\",\"doi\":\"arxiv-2408.00520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study introduces OTCliM (Optical Turbulence Climatology using Machine\\nlearning), a novel approach for deriving comprehensive climatologies of\\natmospheric optical turbulence strength ($C_n^2$) using gradient boosting\\nmachines. OTCliM addresses the challenge of efficiently obtaining reliable\\nsite-specific $C_n^2$ climatologies, crucial for ground-based astronomy and\\nfree-space optical communication. Using gradient boosting machines and global\\nreanalysis data, OTCliM extrapolates one year of measured $C_n^2$ into a\\nmulti-year time series. We assess OTCliM's performance using $C_n^2$ data from\\n17 diverse stations in New York State, evaluating temporal extrapolation\\ncapabilities and geographical generalization. Our results demonstrate accurate\\npredictions of four held-out years of $C_n^2$ across various sites, including\\ncomplex urban environments, outperforming traditional analytical models.\\nNon-urban models also show good geographical generalization compared to urban\\nmodels, which captured non-general site-specific dependencies. A feature\\nimportance analysis confirms the physical consistency of the trained models. It\\nalso indicates the potential to uncover new insights into the physical\\nprocesses governing $C_n^2$ from data. OTCliM's ability to derive reliable\\n$C_n^2$ climatologies from just one year of observations can potentially reduce\\nresources required for future site surveys or enable studies for additional\\nsites with the same resources.\",\"PeriodicalId\":501166,\"journal\":{\"name\":\"arXiv - PHYS - Atmospheric and Oceanic Physics\",\"volume\":\"217 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Atmospheric and Oceanic Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.00520\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Atmospheric and Oceanic Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.00520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了 OTCliM(利用机器学习的光学湍流气候学),这是一种利用梯度提升机器推导大气光学湍流强度($C_n^2$)综合气候学的新方法。OTCliM 解决了高效获取可靠的特定站点$C_n^2$气候学的难题,这对地基天文学和自由空间光通信至关重要。OTCliM 利用梯度提升机器和全球分析数据,将一年的测量值 C_n^2$ 推断为多年的时间序列。我们使用纽约州 17 个不同站点的 C_n^2$ 数据评估了 OTCliM 的性能,评估了时间外推能力和地理泛化能力。我们的结果表明,OTCliM 能够准确预测不同站点(包括复杂的城市环境)四年的 $C_n^2$,优于传统的分析模型。与城市模型相比,非城市模型也显示出良好的地理泛化能力,因为城市模型捕捉到了非一般站点的特定依赖性。特征重要性分析证实了训练模型的物理一致性。这也表明,我们有可能从数据中发现支配 $C_n^2$ 的物理过程的新见解。OTCliM 能够从一年的观测数据中推导出可靠的 C_n^2$ 气候学数据,这有可能减少未来站点调查所需的资源,或在资源相同的情况下对更多站点进行研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
OTCliM: generating a near-surface climatology of optical turbulence strength ($C_n^2$) using gradient boosting
This study introduces OTCliM (Optical Turbulence Climatology using Machine learning), a novel approach for deriving comprehensive climatologies of atmospheric optical turbulence strength ($C_n^2$) using gradient boosting machines. OTCliM addresses the challenge of efficiently obtaining reliable site-specific $C_n^2$ climatologies, crucial for ground-based astronomy and free-space optical communication. Using gradient boosting machines and global reanalysis data, OTCliM extrapolates one year of measured $C_n^2$ into a multi-year time series. We assess OTCliM's performance using $C_n^2$ data from 17 diverse stations in New York State, evaluating temporal extrapolation capabilities and geographical generalization. Our results demonstrate accurate predictions of four held-out years of $C_n^2$ across various sites, including complex urban environments, outperforming traditional analytical models. Non-urban models also show good geographical generalization compared to urban models, which captured non-general site-specific dependencies. A feature importance analysis confirms the physical consistency of the trained models. It also indicates the potential to uncover new insights into the physical processes governing $C_n^2$ from data. OTCliM's ability to derive reliable $C_n^2$ climatologies from just one year of observations can potentially reduce resources required for future site surveys or enable studies for additional sites with the same resources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Harnessing AI data-driven global weather models for climate attribution: An analysis of the 2017 Oroville Dam extreme atmospheric river Super Resolution On Global Weather Forecasts Can Transfer Learning be Used to Identify Tropical State-Dependent Bias Relevant to Midlatitude Subseasonal Predictability? Using Generative Models to Produce Realistic Populations of the United Kingdom Windstorms Integrated nowcasting of convective precipitation with Transformer-based models using multi-source data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1