通过机器学习引导的无细胞表达加速酶工程

Grant M Landwehr, Jonathan W Bogart, Carol Magalhaes, Eric Hammarlund, Ashty S Karim, Michael C Jewett
{"title":"通过机器学习引导的无细胞表达加速酶工程","authors":"Grant M Landwehr, Jonathan W Bogart, Carol Magalhaes, Eric Hammarlund, Ashty S Karim, Michael C Jewett","doi":"10.1101/2024.07.30.605672","DOIUrl":null,"url":null,"abstract":"Enzyme engineering is limited by the challenge of rapidly generating and using large datasets of sequence-function relationships for predictive design. To address this challenge, we developed a machine learning (ML)-guided platform that integrates cell-free DNA assembly, cell-free gene expression, and functional assays to rapidly map fitness landscapes across protein sequence space and optimize enzymes for multiple, distinct chemical reactions. We applied this platform to engineer amide synthetases by evaluating substrate preference for 1,217 enzyme variants in 10,953 unique reactions. We used these data to build augmented ridge regression ML models for predicting amide synthetase variants capable of making 9 small molecule pharmaceuticals. Our ML-guided, cell-free framework promises to accelerate enzyme engineering by enabling iterative exploration of protein sequence space to build specialized biocatalysts in parallel.","PeriodicalId":501408,"journal":{"name":"bioRxiv - Synthetic Biology","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accelerated enzyme engineering by machine-learning guided cell-free expression\",\"authors\":\"Grant M Landwehr, Jonathan W Bogart, Carol Magalhaes, Eric Hammarlund, Ashty S Karim, Michael C Jewett\",\"doi\":\"10.1101/2024.07.30.605672\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Enzyme engineering is limited by the challenge of rapidly generating and using large datasets of sequence-function relationships for predictive design. To address this challenge, we developed a machine learning (ML)-guided platform that integrates cell-free DNA assembly, cell-free gene expression, and functional assays to rapidly map fitness landscapes across protein sequence space and optimize enzymes for multiple, distinct chemical reactions. We applied this platform to engineer amide synthetases by evaluating substrate preference for 1,217 enzyme variants in 10,953 unique reactions. We used these data to build augmented ridge regression ML models for predicting amide synthetase variants capable of making 9 small molecule pharmaceuticals. Our ML-guided, cell-free framework promises to accelerate enzyme engineering by enabling iterative exploration of protein sequence space to build specialized biocatalysts in parallel.\",\"PeriodicalId\":501408,\"journal\":{\"name\":\"bioRxiv - Synthetic Biology\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Synthetic Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.07.30.605672\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Synthetic Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.07.30.605672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

酶工程受限于快速生成和使用大量序列-功能关系数据集进行预测性设计的挑战。为了应对这一挑战,我们开发了一个机器学习(ML)指导的平台,该平台整合了无细胞 DNA 组装、无细胞基因表达和功能检测,可快速绘制整个蛋白质序列空间的适应性景观,并针对多种不同的化学反应优化酶。我们将该平台应用于酰胺合成酶的工程化,评估了 10953 个独特反应中 1,217 个酶变体的底物偏好。我们利用这些数据建立了增强脊回归 ML 模型,用于预测能够制造 9 种小分子药物的酰胺合成酶变体。我们的以 ML 为指导的无细胞框架有望通过迭代探索蛋白质序列空间来并行构建专门的生物催化剂,从而加速酶工程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Accelerated enzyme engineering by machine-learning guided cell-free expression
Enzyme engineering is limited by the challenge of rapidly generating and using large datasets of sequence-function relationships for predictive design. To address this challenge, we developed a machine learning (ML)-guided platform that integrates cell-free DNA assembly, cell-free gene expression, and functional assays to rapidly map fitness landscapes across protein sequence space and optimize enzymes for multiple, distinct chemical reactions. We applied this platform to engineer amide synthetases by evaluating substrate preference for 1,217 enzyme variants in 10,953 unique reactions. We used these data to build augmented ridge regression ML models for predicting amide synthetase variants capable of making 9 small molecule pharmaceuticals. Our ML-guided, cell-free framework promises to accelerate enzyme engineering by enabling iterative exploration of protein sequence space to build specialized biocatalysts in parallel.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DNA-templated spatially controlled proteolysis targeting chimeras for CyclinD1-CDK4/6 complex protein degradation Cas9AEY (Cas9-facilitated Homologous Recombination Assembly of non-specific Escherichia coli yeast vector) method of constructing large-sized DNA. Metabolite-responsive Control of Transcription by Phase Separation-based Synthetic Organelles A modular system for programming multistep activation of endogenous genes in stem cells Mutual dependence between membrane phase separation and bacterial division protein dynamics in synthetic cell models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1