Dinh Quang Nguyen, The Hung Tran, Dinh Anh Le, Nguyen Tuan Hieu, Van Khiem Pham, Truong Sang Ha
{"title":"低速条件下利用纵向槽腔减少轴对称船尾模型的阻力","authors":"Dinh Quang Nguyen, The Hung Tran, Dinh Anh Le, Nguyen Tuan Hieu, Van Khiem Pham, Truong Sang Ha","doi":"10.1007/s12206-024-0718-4","DOIUrl":null,"url":null,"abstract":"<p>The effect of longitudinal groove cavities on drag and flow behavior was investigated for the axisymmetric model acquired by different conical boattail models. The angle of the boattail was changed from 0 to 22° to understand the influence of cavities on the aerodynamic drag and flow behaviors. The Reynolds averaged Navier-Stokes (RANS) equation with turbulent model k-ω SST was used for the investigation. The simulation was conducted at a velocity of 22 m/s by Ansys Fluent software. Numerical results of the boundary layer, velocity fields, pressure, and drag were first validated by experiments at the same flow conditions. Our results indicate that the grooved cavity allows a reduction of aerodynamic drag up to 24 % for the boattail model of 22°. Additionally, a 6 % drag reduction was also observed for the boattail model of around 14°, where the drag is minimal. The decreasing drag is connected to an increasing base pressure, which is from shortening wake structure and increasing boattail pressure around the shoulder. The longitudinal grooves are found an effective passive control device for narrowing flow separation on the boattail. The details of pressure distributions, flow structure at the surface, and near-wake structure were investigated.</p>","PeriodicalId":16235,"journal":{"name":"Journal of Mechanical Science and Technology","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Drag reduction for axisymmetric boattail model by longitudinal groove cavity under low-speed conditions\",\"authors\":\"Dinh Quang Nguyen, The Hung Tran, Dinh Anh Le, Nguyen Tuan Hieu, Van Khiem Pham, Truong Sang Ha\",\"doi\":\"10.1007/s12206-024-0718-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The effect of longitudinal groove cavities on drag and flow behavior was investigated for the axisymmetric model acquired by different conical boattail models. The angle of the boattail was changed from 0 to 22° to understand the influence of cavities on the aerodynamic drag and flow behaviors. The Reynolds averaged Navier-Stokes (RANS) equation with turbulent model k-ω SST was used for the investigation. The simulation was conducted at a velocity of 22 m/s by Ansys Fluent software. Numerical results of the boundary layer, velocity fields, pressure, and drag were first validated by experiments at the same flow conditions. Our results indicate that the grooved cavity allows a reduction of aerodynamic drag up to 24 % for the boattail model of 22°. Additionally, a 6 % drag reduction was also observed for the boattail model of around 14°, where the drag is minimal. The decreasing drag is connected to an increasing base pressure, which is from shortening wake structure and increasing boattail pressure around the shoulder. The longitudinal grooves are found an effective passive control device for narrowing flow separation on the boattail. The details of pressure distributions, flow structure at the surface, and near-wake structure were investigated.</p>\",\"PeriodicalId\":16235,\"journal\":{\"name\":\"Journal of Mechanical Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanical Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12206-024-0718-4\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12206-024-0718-4","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Drag reduction for axisymmetric boattail model by longitudinal groove cavity under low-speed conditions
The effect of longitudinal groove cavities on drag and flow behavior was investigated for the axisymmetric model acquired by different conical boattail models. The angle of the boattail was changed from 0 to 22° to understand the influence of cavities on the aerodynamic drag and flow behaviors. The Reynolds averaged Navier-Stokes (RANS) equation with turbulent model k-ω SST was used for the investigation. The simulation was conducted at a velocity of 22 m/s by Ansys Fluent software. Numerical results of the boundary layer, velocity fields, pressure, and drag were first validated by experiments at the same flow conditions. Our results indicate that the grooved cavity allows a reduction of aerodynamic drag up to 24 % for the boattail model of 22°. Additionally, a 6 % drag reduction was also observed for the boattail model of around 14°, where the drag is minimal. The decreasing drag is connected to an increasing base pressure, which is from shortening wake structure and increasing boattail pressure around the shoulder. The longitudinal grooves are found an effective passive control device for narrowing flow separation on the boattail. The details of pressure distributions, flow structure at the surface, and near-wake structure were investigated.
期刊介绍:
The aim of the Journal of Mechanical Science and Technology is to provide an international forum for the publication and dissemination of original work that contributes to the understanding of the main and related disciplines of mechanical engineering, either empirical or theoretical. The Journal covers the whole spectrum of mechanical engineering, which includes, but is not limited to, Materials and Design Engineering, Production Engineering and Fusion Technology, Dynamics, Vibration and Control, Thermal Engineering and Fluids Engineering.
Manuscripts may fall into several categories including full articles, solicited reviews or commentary, and unsolicited reviews or commentary related to the core of mechanical engineering.