带特征值修正的牛顿法校准并联机构的几何误差

IF 1.5 4区 工程技术 Q3 ENGINEERING, MECHANICAL Journal of Mechanical Science and Technology Pub Date : 2024-08-02 DOI:10.1007/s12206-024-0729-1
Xiangyu Guo, Rui Wang, Minghang Zhao, Shisheng Zhong
{"title":"带特征值修正的牛顿法校准并联机构的几何误差","authors":"Xiangyu Guo, Rui Wang, Minghang Zhao, Shisheng Zhong","doi":"10.1007/s12206-024-0729-1","DOIUrl":null,"url":null,"abstract":"<p>To address the ill-conditioning of the Jacobian matrix in the geometric error calibration of parallel mechanisms, a Newton method with characteristic value correction (NMCVC) is proposed. This method integrates and enhances the principles of the characteristic value correction iteration method (CVCIM), and Newton method, offering targeted improvements for more effective calibration. First, the damping coefficient is introduced into the CVCIM, and an adaptive strategy for determining the damping coefficient is developed with rigorous proof steps according to the relationship between the condition number and the singular value, which enhances computing efficiency while avoiding the ill-conditioning of the Jacobian matrix. Second, a dynamic adjustment strategy for the CVCIM’s termination condition is designed. This strategy initially estimates the descending direction roughly to approximate the actual descending direction, enhancing computing speed, and then estimates it more accurately at the end of the training stage to obtain precise geometric error values. Finally, by taking a 3RPS parallel mechanism as the instance, three sets of simulation experiments have been designed to test and verify the effectiveness of the algorithm.</p>","PeriodicalId":16235,"journal":{"name":"Journal of Mechanical Science and Technology","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Newton method with characteristic value correction for geometric error calibration of parallel mechanism\",\"authors\":\"Xiangyu Guo, Rui Wang, Minghang Zhao, Shisheng Zhong\",\"doi\":\"10.1007/s12206-024-0729-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To address the ill-conditioning of the Jacobian matrix in the geometric error calibration of parallel mechanisms, a Newton method with characteristic value correction (NMCVC) is proposed. This method integrates and enhances the principles of the characteristic value correction iteration method (CVCIM), and Newton method, offering targeted improvements for more effective calibration. First, the damping coefficient is introduced into the CVCIM, and an adaptive strategy for determining the damping coefficient is developed with rigorous proof steps according to the relationship between the condition number and the singular value, which enhances computing efficiency while avoiding the ill-conditioning of the Jacobian matrix. Second, a dynamic adjustment strategy for the CVCIM’s termination condition is designed. This strategy initially estimates the descending direction roughly to approximate the actual descending direction, enhancing computing speed, and then estimates it more accurately at the end of the training stage to obtain precise geometric error values. Finally, by taking a 3RPS parallel mechanism as the instance, three sets of simulation experiments have been designed to test and verify the effectiveness of the algorithm.</p>\",\"PeriodicalId\":16235,\"journal\":{\"name\":\"Journal of Mechanical Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanical Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12206-024-0729-1\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12206-024-0729-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

为解决并联机构几何误差校准中雅各矩阵条件不良的问题,提出了一种带特征值修正的牛顿法(NMCVC)。该方法整合并增强了特征值修正迭代法(CVCIM)和牛顿法的原理,为更有效的校准提供了有针对性的改进。首先,在 CVCIM 中引入了阻尼系数,并根据条件数与奇异值之间的关系,通过严格的证明步骤,制定了确定阻尼系数的自适应策略,在提高计算效率的同时,避免了雅各布矩阵的非条件化。其次,设计了 CVCIM 终止条件的动态调整策略。该策略先粗略估计下降方向以近似实际下降方向,从而提高计算速度,然后在训练阶段结束时更精确地估计下降方向,以获得精确的几何误差值。最后,以 3RPS 并行机制为实例,设计了三组仿真实验来测试和验证算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Newton method with characteristic value correction for geometric error calibration of parallel mechanism

To address the ill-conditioning of the Jacobian matrix in the geometric error calibration of parallel mechanisms, a Newton method with characteristic value correction (NMCVC) is proposed. This method integrates and enhances the principles of the characteristic value correction iteration method (CVCIM), and Newton method, offering targeted improvements for more effective calibration. First, the damping coefficient is introduced into the CVCIM, and an adaptive strategy for determining the damping coefficient is developed with rigorous proof steps according to the relationship between the condition number and the singular value, which enhances computing efficiency while avoiding the ill-conditioning of the Jacobian matrix. Second, a dynamic adjustment strategy for the CVCIM’s termination condition is designed. This strategy initially estimates the descending direction roughly to approximate the actual descending direction, enhancing computing speed, and then estimates it more accurately at the end of the training stage to obtain precise geometric error values. Finally, by taking a 3RPS parallel mechanism as the instance, three sets of simulation experiments have been designed to test and verify the effectiveness of the algorithm.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mechanical Science and Technology
Journal of Mechanical Science and Technology 工程技术-工程:机械
CiteScore
2.90
自引率
6.20%
发文量
517
审稿时长
7.7 months
期刊介绍: The aim of the Journal of Mechanical Science and Technology is to provide an international forum for the publication and dissemination of original work that contributes to the understanding of the main and related disciplines of mechanical engineering, either empirical or theoretical. The Journal covers the whole spectrum of mechanical engineering, which includes, but is not limited to, Materials and Design Engineering, Production Engineering and Fusion Technology, Dynamics, Vibration and Control, Thermal Engineering and Fluids Engineering. Manuscripts may fall into several categories including full articles, solicited reviews or commentary, and unsolicited reviews or commentary related to the core of mechanical engineering.
期刊最新文献
Numerical study of the sand distribution inside a diesel locomotive operating in wind-blown sand environment Inter electrode gap detection in electrochemical machining with electroforming planar coils Assessment of the mathematical modelling of thermophysical properties during the pyrolysis of coking coals Generative models for tabular data: A review Kriging-PSO-based shape optimization for railway wheel profile
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1