带波算子的非线性薛定谔方程嵌套皮卡尔积分器的均匀和最优误差估计

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-08-02 DOI:10.1002/num.23135
Yongyong Cai, Yue Feng, Yichen Guo, Zhiguo Xu
{"title":"带波算子的非线性薛定谔方程嵌套皮卡尔积分器的均匀和最优误差估计","authors":"Yongyong Cai, Yue Feng, Yichen Guo, Zhiguo Xu","doi":"10.1002/num.23135","DOIUrl":null,"url":null,"abstract":"We propose a second‐order nested Picard iterative integrator sine pseudospectral (NPI‐SP) method for the nonlinear Schrödinger equation with wave operator (NLSW) involving a parameter and carry out rigorous error estimates. Actually, the equation propagates wave with wavelength in time, while the amplitude of the leading oscillation is for well‐prepared initial data, and for ill‐prepared initial data, respectively. Based on the exponential integrator and nested Picard iteration, the uniformly accurate (w.r.t. ) NPI‐SP scheme is proposed with the optimal uniform error bounds at in time and spectral accuracy in space for both well‐prepared and ill‐prepared data in ‐norm. This result significantly improves the error bounds of the finite difference methods and exponential wave integrator for the NLSW. Error estimates are rigorously carried out and numerical examples are provided to confirm the theoretical analysis.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uniform and optimal error estimates of a nested Picard integrator for the nonlinear Schrödinger equation with wave operator\",\"authors\":\"Yongyong Cai, Yue Feng, Yichen Guo, Zhiguo Xu\",\"doi\":\"10.1002/num.23135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a second‐order nested Picard iterative integrator sine pseudospectral (NPI‐SP) method for the nonlinear Schrödinger equation with wave operator (NLSW) involving a parameter and carry out rigorous error estimates. Actually, the equation propagates wave with wavelength in time, while the amplitude of the leading oscillation is for well‐prepared initial data, and for ill‐prepared initial data, respectively. Based on the exponential integrator and nested Picard iteration, the uniformly accurate (w.r.t. ) NPI‐SP scheme is proposed with the optimal uniform error bounds at in time and spectral accuracy in space for both well‐prepared and ill‐prepared data in ‐norm. This result significantly improves the error bounds of the finite difference methods and exponential wave integrator for the NLSW. Error estimates are rigorously carried out and numerical examples are provided to confirm the theoretical analysis.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/num.23135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/num.23135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种二阶嵌套皮卡尔迭代积分器正弦伪谱(NPI-SP)方法,用于涉及一个参数的带波算子的非线性薛定谔方程(NLSW),并进行了严格的误差估计。实际上,该方程在时间上以波长传播波,而前导振荡的振幅则分别针对准备充分的初始数据和准备不足的初始数据。在指数积分器和嵌套 Picard 迭代的基础上,提出了均匀精度(w.r.t. )的 NPI-SP 方案,该方案在时间上具有最优均匀误差边界,在空间上对准备充分和准备不足的数据都具有-正态的光谱精度。这一结果极大地改进了有限差分法和指数波积分器对 NLSW 的误差约束。对误差进行了严格估计,并提供了数值示例来证实理论分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Uniform and optimal error estimates of a nested Picard integrator for the nonlinear Schrödinger equation with wave operator
We propose a second‐order nested Picard iterative integrator sine pseudospectral (NPI‐SP) method for the nonlinear Schrödinger equation with wave operator (NLSW) involving a parameter and carry out rigorous error estimates. Actually, the equation propagates wave with wavelength in time, while the amplitude of the leading oscillation is for well‐prepared initial data, and for ill‐prepared initial data, respectively. Based on the exponential integrator and nested Picard iteration, the uniformly accurate (w.r.t. ) NPI‐SP scheme is proposed with the optimal uniform error bounds at in time and spectral accuracy in space for both well‐prepared and ill‐prepared data in ‐norm. This result significantly improves the error bounds of the finite difference methods and exponential wave integrator for the NLSW. Error estimates are rigorously carried out and numerical examples are provided to confirm the theoretical analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1