{"title":"范德瓦尔斯铁磁体 Fe5-xGeTe2 (x ∼ 0.16) 中与热历史有关的特性","authors":"Ramesh Lalmani Yadav, Pallab Bag, Chien-Chih Lai, Yung-Kang Kuo, Chia-Nung Kuo, Chin-Shan Lue","doi":"10.1063/5.0215121","DOIUrl":null,"url":null,"abstract":"We investigated the thermal-history dependence of physical properties in a quenched Fe5−xGeTe2 (x ∼ 0.16) single crystal by measuring magnetization (M), electrical resistivity (ρ), Seebeck coefficient (S), and thermal conductivity (κ) as a function of temperature (T). The results reveal anomalies in these physical quantities around various transition points: ferromagnetic (TC ∼ 310–300 K), helimagnetic (TH ∼ 275 K), charge ordering (TCO ∼ 165 K), spin-reorientation (T* ∼ 100–120 K), and a Fermi-liquid (FL) phase below TL ∼ 35 K. Using power-law fitting, the M(T) analysis near TC shows that Fe moments become primarily itinerant after thermal cycling. The ρ(T) results indicate inherent residual stresses in the crystal that alter with thermal cycling, influencing ferromagnetic domain formations within grain boundaries. The system exhibits a strongly correlated FL behavior at low temperatures, which ceases above TL due to spin fluctuations. In the T-range of T* ≤ T ≤ TCO, ρ(T) and S(T) analyses suggest significant electronic band structure modifications with multiband effects. The κ(T) data indicate phonon-dominated heat transport in the crystal, with a phonon behavior influenced by inherent lattice strains following initial thermal cycles, as evidenced by the decreased phonon peak height at low temperatures. In addition, there is evidence of phonon localization and electron–phonon coupling at higher temperatures.","PeriodicalId":7985,"journal":{"name":"APL Materials","volume":"81 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal history-dependent characteristics in van der Waals ferromagnet Fe5−xGeTe2 (x ∼ 0.16)\",\"authors\":\"Ramesh Lalmani Yadav, Pallab Bag, Chien-Chih Lai, Yung-Kang Kuo, Chia-Nung Kuo, Chin-Shan Lue\",\"doi\":\"10.1063/5.0215121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigated the thermal-history dependence of physical properties in a quenched Fe5−xGeTe2 (x ∼ 0.16) single crystal by measuring magnetization (M), electrical resistivity (ρ), Seebeck coefficient (S), and thermal conductivity (κ) as a function of temperature (T). The results reveal anomalies in these physical quantities around various transition points: ferromagnetic (TC ∼ 310–300 K), helimagnetic (TH ∼ 275 K), charge ordering (TCO ∼ 165 K), spin-reorientation (T* ∼ 100–120 K), and a Fermi-liquid (FL) phase below TL ∼ 35 K. Using power-law fitting, the M(T) analysis near TC shows that Fe moments become primarily itinerant after thermal cycling. The ρ(T) results indicate inherent residual stresses in the crystal that alter with thermal cycling, influencing ferromagnetic domain formations within grain boundaries. The system exhibits a strongly correlated FL behavior at low temperatures, which ceases above TL due to spin fluctuations. In the T-range of T* ≤ T ≤ TCO, ρ(T) and S(T) analyses suggest significant electronic band structure modifications with multiband effects. The κ(T) data indicate phonon-dominated heat transport in the crystal, with a phonon behavior influenced by inherent lattice strains following initial thermal cycles, as evidenced by the decreased phonon peak height at low temperatures. In addition, there is evidence of phonon localization and electron–phonon coupling at higher temperatures.\",\"PeriodicalId\":7985,\"journal\":{\"name\":\"APL Materials\",\"volume\":\"81 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"APL Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0215121\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1063/5.0215121","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Thermal history-dependent characteristics in van der Waals ferromagnet Fe5−xGeTe2 (x ∼ 0.16)
We investigated the thermal-history dependence of physical properties in a quenched Fe5−xGeTe2 (x ∼ 0.16) single crystal by measuring magnetization (M), electrical resistivity (ρ), Seebeck coefficient (S), and thermal conductivity (κ) as a function of temperature (T). The results reveal anomalies in these physical quantities around various transition points: ferromagnetic (TC ∼ 310–300 K), helimagnetic (TH ∼ 275 K), charge ordering (TCO ∼ 165 K), spin-reorientation (T* ∼ 100–120 K), and a Fermi-liquid (FL) phase below TL ∼ 35 K. Using power-law fitting, the M(T) analysis near TC shows that Fe moments become primarily itinerant after thermal cycling. The ρ(T) results indicate inherent residual stresses in the crystal that alter with thermal cycling, influencing ferromagnetic domain formations within grain boundaries. The system exhibits a strongly correlated FL behavior at low temperatures, which ceases above TL due to spin fluctuations. In the T-range of T* ≤ T ≤ TCO, ρ(T) and S(T) analyses suggest significant electronic band structure modifications with multiband effects. The κ(T) data indicate phonon-dominated heat transport in the crystal, with a phonon behavior influenced by inherent lattice strains following initial thermal cycles, as evidenced by the decreased phonon peak height at low temperatures. In addition, there is evidence of phonon localization and electron–phonon coupling at higher temperatures.
期刊介绍:
APL Materials features original, experimental research on significant topical issues within the field of materials science. In order to highlight research at the forefront of materials science, emphasis is given to the quality and timeliness of the work. The journal considers theory or calculation when the work is particularly timely and relevant to applications.
In addition to regular articles, the journal also publishes Special Topics, which report on cutting-edge areas in materials science, such as Perovskite Solar Cells, 2D Materials, and Beyond Lithium Ion Batteries.