{"title":"利用基于表面等离子体共振的 D 形光纤生物传感器早期检测癌细胞的数值模拟","authors":"Ahmed Akouibaa, Abdelilah Akouibaa, Rachid Masrour, Mabrouk Benhamou, Abdellah Rezzouk, Heryanto Heryanto","doi":"10.1007/s10876-024-02677-y","DOIUrl":null,"url":null,"abstract":"<div><p>The phenomenon of surface plasmon resonance (SPR) has attracted a lot of attention in recent years due to its potential applications in various fields, including biology, chemistry, materials physics and sensing technologies. In particular, SPR is used in optical devices, sensors and optoelectronic devices because of its sensitive and selective sensing capabilities. In this paper, we have used a numerical approach based on the finite element method (FEM) to study the performance of a highly sensitive D-shaped optical fiber biosensor, exploiting SPR, for the early detection of cancer in individual living cells. The sensitive part of the proposed biosensor consists of a thin layer of gold (Au) covered by a layer of titanium dioxide TiO<sub>2</sub>. Our numerical analysis aims to find the optimum design and handling parameters for detecting three types of cancer, namely breast cancer MDA-MB-231, MCF-7 and skin cancer (basal cells). To achieve this goal, we modeled the sensor’s sensitivity to the change in refractive index of the surrounding biological medium when introduced into healthy human cells and their cancerous counterparts. Our results show that the maximum sensitivity of the proposed sensor reaches the values of <span>\\(2017 nm.\\,RIU^{ - 1}\\)</span>, <span>\\(2016 nm.\\,RIU^{ - 1}\\)</span> and <span>\\(1571 \\,nm.\\,RIU^{ - 1}\\)</span> respectively when used for the detection of MDA-MB-231, MCF-7 and Basal cell cancers. RI resolution is estimated at <span>\\(4,96.10^{ - 6} RIU\\)</span> for MDA-MB-231 and MCF-7, while for Basal cell it is estimated at <span>\\(6,37.10^{ - 6} RIU\\)</span>.</p></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"35 7","pages":"2459 - 2474"},"PeriodicalIF":2.7000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Simulation of Early Detection of Cancer Cells Using a D-Shaped Fiber-Optic Biosensor Based on Surface Plasmon Resonance\",\"authors\":\"Ahmed Akouibaa, Abdelilah Akouibaa, Rachid Masrour, Mabrouk Benhamou, Abdellah Rezzouk, Heryanto Heryanto\",\"doi\":\"10.1007/s10876-024-02677-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The phenomenon of surface plasmon resonance (SPR) has attracted a lot of attention in recent years due to its potential applications in various fields, including biology, chemistry, materials physics and sensing technologies. In particular, SPR is used in optical devices, sensors and optoelectronic devices because of its sensitive and selective sensing capabilities. In this paper, we have used a numerical approach based on the finite element method (FEM) to study the performance of a highly sensitive D-shaped optical fiber biosensor, exploiting SPR, for the early detection of cancer in individual living cells. The sensitive part of the proposed biosensor consists of a thin layer of gold (Au) covered by a layer of titanium dioxide TiO<sub>2</sub>. Our numerical analysis aims to find the optimum design and handling parameters for detecting three types of cancer, namely breast cancer MDA-MB-231, MCF-7 and skin cancer (basal cells). To achieve this goal, we modeled the sensor’s sensitivity to the change in refractive index of the surrounding biological medium when introduced into healthy human cells and their cancerous counterparts. Our results show that the maximum sensitivity of the proposed sensor reaches the values of <span>\\\\(2017 nm.\\\\,RIU^{ - 1}\\\\)</span>, <span>\\\\(2016 nm.\\\\,RIU^{ - 1}\\\\)</span> and <span>\\\\(1571 \\\\,nm.\\\\,RIU^{ - 1}\\\\)</span> respectively when used for the detection of MDA-MB-231, MCF-7 and Basal cell cancers. RI resolution is estimated at <span>\\\\(4,96.10^{ - 6} RIU\\\\)</span> for MDA-MB-231 and MCF-7, while for Basal cell it is estimated at <span>\\\\(6,37.10^{ - 6} RIU\\\\)</span>.</p></div>\",\"PeriodicalId\":618,\"journal\":{\"name\":\"Journal of Cluster Science\",\"volume\":\"35 7\",\"pages\":\"2459 - 2474\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cluster Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10876-024-02677-y\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cluster Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10876-024-02677-y","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
摘要
近年来,表面等离子体共振(SPR)现象因其在生物、化学、材料物理和传感技术等多个领域的潜在应用而备受关注。特别是,由于 SPR 具有灵敏的选择性传感能力,因此被广泛应用于光学设备、传感器和光电设备中。在本文中,我们采用基于有限元法(FEM)的数值方法研究了利用 SPR 的高灵敏度 D 型光纤生物传感器的性能,该传感器用于早期检测单个活细胞中的癌症。拟议生物传感器的敏感部分由一层金(Au)薄层和一层二氧化钛(TiO2)薄层组成。我们的数值分析旨在找到检测三种癌症(即乳腺癌 MDA-MB-231、MCF-7 和皮肤癌(基底细胞))的最佳设计和处理参数。为实现这一目标,我们模拟了传感器在导入健康人体细胞和癌细胞时对周围生物介质折射率变化的灵敏度。我们的结果表明,当用于检测MDA-MB-231、MCF-7和基底细胞癌时,拟议传感器的最大灵敏度分别达到了(2017 nm.\,RIU^{-1}\)、(2016 nm.\,RIU^{-1}\)和(1571 nm.\,RIU^{-1}\)。MDA-MB-231 和 MCF-7 的 RI 分辨率估计为(4,96.10^{ - 6} RIU/),而 Basal 细胞的 RI 分辨率估计为(6,37.10^{ - 6} RIU/)。
Numerical Simulation of Early Detection of Cancer Cells Using a D-Shaped Fiber-Optic Biosensor Based on Surface Plasmon Resonance
The phenomenon of surface plasmon resonance (SPR) has attracted a lot of attention in recent years due to its potential applications in various fields, including biology, chemistry, materials physics and sensing technologies. In particular, SPR is used in optical devices, sensors and optoelectronic devices because of its sensitive and selective sensing capabilities. In this paper, we have used a numerical approach based on the finite element method (FEM) to study the performance of a highly sensitive D-shaped optical fiber biosensor, exploiting SPR, for the early detection of cancer in individual living cells. The sensitive part of the proposed biosensor consists of a thin layer of gold (Au) covered by a layer of titanium dioxide TiO2. Our numerical analysis aims to find the optimum design and handling parameters for detecting three types of cancer, namely breast cancer MDA-MB-231, MCF-7 and skin cancer (basal cells). To achieve this goal, we modeled the sensor’s sensitivity to the change in refractive index of the surrounding biological medium when introduced into healthy human cells and their cancerous counterparts. Our results show that the maximum sensitivity of the proposed sensor reaches the values of \(2017 nm.\,RIU^{ - 1}\), \(2016 nm.\,RIU^{ - 1}\) and \(1571 \,nm.\,RIU^{ - 1}\) respectively when used for the detection of MDA-MB-231, MCF-7 and Basal cell cancers. RI resolution is estimated at \(4,96.10^{ - 6} RIU\) for MDA-MB-231 and MCF-7, while for Basal cell it is estimated at \(6,37.10^{ - 6} RIU\).
期刊介绍:
The journal publishes the following types of papers: (a) original and important research;
(b) authoritative comprehensive reviews or short overviews of topics of current
interest; (c) brief but urgent communications on new significant research; and (d)
commentaries intended to foster the exchange of innovative or provocative ideas, and
to encourage dialogue, amongst researchers working in different cluster
disciplines.