{"title":"具有短程相互作用的吉布斯点过程的非超均匀性","authors":"David Dereudre, Daniela Flimmel","doi":"10.1017/jpr.2024.21","DOIUrl":null,"url":null,"abstract":"We investigate the hyperuniformity of marked Gibbs point processes that have weak dependencies among distant points whilst the interactions of close points are kept arbitrary. Various stability and range assumptions are imposed on the Papangelou intensity in order to prove that the resulting point process is not hyperuniform. The scope of our results covers many frequently used models, including Gibbs point processes with a superstable, lower-regular, integrable pair potential, as well as the Widom–Rowlinson model with random radii and Gibbs point processes with interactions based on Voronoi tessellations and nearest-neighbour graphs.","PeriodicalId":50256,"journal":{"name":"Journal of Applied Probability","volume":"190 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-hyperuniformity of Gibbs point processes with short-range interactions\",\"authors\":\"David Dereudre, Daniela Flimmel\",\"doi\":\"10.1017/jpr.2024.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the hyperuniformity of marked Gibbs point processes that have weak dependencies among distant points whilst the interactions of close points are kept arbitrary. Various stability and range assumptions are imposed on the Papangelou intensity in order to prove that the resulting point process is not hyperuniform. The scope of our results covers many frequently used models, including Gibbs point processes with a superstable, lower-regular, integrable pair potential, as well as the Widom–Rowlinson model with random radii and Gibbs point processes with interactions based on Voronoi tessellations and nearest-neighbour graphs.\",\"PeriodicalId\":50256,\"journal\":{\"name\":\"Journal of Applied Probability\",\"volume\":\"190 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/jpr.2024.21\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/jpr.2024.21","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Non-hyperuniformity of Gibbs point processes with short-range interactions
We investigate the hyperuniformity of marked Gibbs point processes that have weak dependencies among distant points whilst the interactions of close points are kept arbitrary. Various stability and range assumptions are imposed on the Papangelou intensity in order to prove that the resulting point process is not hyperuniform. The scope of our results covers many frequently used models, including Gibbs point processes with a superstable, lower-regular, integrable pair potential, as well as the Widom–Rowlinson model with random radii and Gibbs point processes with interactions based on Voronoi tessellations and nearest-neighbour graphs.
期刊介绍:
Journal of Applied Probability is the oldest journal devoted to the publication of research in the field of applied probability. It is an international journal published by the Applied Probability Trust, and it serves as a companion publication to the Advances in Applied Probability. Its wide audience includes leading researchers across the entire spectrum of applied probability, including biosciences applications, operations research, telecommunications, computer science, engineering, epidemiology, financial mathematics, the physical and social sciences, and any field where stochastic modeling is used.
A submission to Applied Probability represents a submission that may, at the Editor-in-Chief’s discretion, appear in either the Journal of Applied Probability or the Advances in Applied Probability. Typically, shorter papers appear in the Journal, with longer contributions appearing in the Advances.