MPCA 和 MDA 通过爱因斯坦产品

Aoulaia Andahmou
{"title":"MPCA 和 MDA 通过爱因斯坦产品","authors":"Aoulaia Andahmou","doi":"10.1007/s40314-024-02866-5","DOIUrl":null,"url":null,"abstract":"<p>This work deals with the problem of multilinear principal component analysis (MPCA) and multilinear discriminant analysis (MDA), that solve for a tensor to tensor projection (TTP) using Einstein product. MPCA and MDA are considered as a higher-order extension of principal component analysis (PCA ) and linear discriminant analysis (LDA), respectively. MPCA seeks to find a low-dimensional representation that captures most of the variation present in the original data tensor. Whereas MDA seeks to find discriminative features that maximize the separation between classes, while preserving the multilinear structure. Specifically, we are interested in finding a projective tensor that maps the original data tensor onto a new lower-dimensional subspace. In this paper, we propose to solve the MPCA problem by employing the global Lanczos procedure via Einstein product for a fourth-order tensor, while solving the MDA problem by combining Newton method and global tensorial Lanczos method. The numerical experiments illustrate the use of these algorithms for face recognition problems, compression and classification.\n</p>","PeriodicalId":51278,"journal":{"name":"Computational and Applied Mathematics","volume":"57 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MPCA and MDA via Einstein product\",\"authors\":\"Aoulaia Andahmou\",\"doi\":\"10.1007/s40314-024-02866-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This work deals with the problem of multilinear principal component analysis (MPCA) and multilinear discriminant analysis (MDA), that solve for a tensor to tensor projection (TTP) using Einstein product. MPCA and MDA are considered as a higher-order extension of principal component analysis (PCA ) and linear discriminant analysis (LDA), respectively. MPCA seeks to find a low-dimensional representation that captures most of the variation present in the original data tensor. Whereas MDA seeks to find discriminative features that maximize the separation between classes, while preserving the multilinear structure. Specifically, we are interested in finding a projective tensor that maps the original data tensor onto a new lower-dimensional subspace. In this paper, we propose to solve the MPCA problem by employing the global Lanczos procedure via Einstein product for a fourth-order tensor, while solving the MDA problem by combining Newton method and global tensorial Lanczos method. The numerical experiments illustrate the use of these algorithms for face recognition problems, compression and classification.\\n</p>\",\"PeriodicalId\":51278,\"journal\":{\"name\":\"Computational and Applied Mathematics\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40314-024-02866-5\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40314-024-02866-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究涉及多线性主成分分析(MPCA)和多线性判别分析(MDA)问题,它们利用爱因斯坦积求解张量到张量的投影(TTP)。多线性主成分分析(MPCA)和多线性判别分析(MDA)分别被视为主成分分析(PCA)和线性判别分析(LDA)的高阶扩展。MPCA 试图找到一种能捕捉原始数据张量中大部分变化的低维表示。而线性判别分析(MDA)则试图找到能最大程度区分不同类别的判别特征,同时保留多线性结构。具体来说,我们感兴趣的是找到一个投影张量,将原始数据张量映射到一个新的低维子空间上。在本文中,我们提出通过四阶张量的爱因斯坦积,采用全局 Lanczos 程序来解决 MPCA 问题,同时结合牛顿法和全局张量 Lanczos 法来解决 MDA 问题。数值实验说明了这些算法在人脸识别问题、压缩和分类中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MPCA and MDA via Einstein product

This work deals with the problem of multilinear principal component analysis (MPCA) and multilinear discriminant analysis (MDA), that solve for a tensor to tensor projection (TTP) using Einstein product. MPCA and MDA are considered as a higher-order extension of principal component analysis (PCA ) and linear discriminant analysis (LDA), respectively. MPCA seeks to find a low-dimensional representation that captures most of the variation present in the original data tensor. Whereas MDA seeks to find discriminative features that maximize the separation between classes, while preserving the multilinear structure. Specifically, we are interested in finding a projective tensor that maps the original data tensor onto a new lower-dimensional subspace. In this paper, we propose to solve the MPCA problem by employing the global Lanczos procedure via Einstein product for a fourth-order tensor, while solving the MDA problem by combining Newton method and global tensorial Lanczos method. The numerical experiments illustrate the use of these algorithms for face recognition problems, compression and classification.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
11.50%
发文量
352
期刊介绍: Computational & Applied Mathematics began to be published in 1981. This journal was conceived as the main scientific publication of SBMAC (Brazilian Society of Computational and Applied Mathematics). The objective of the journal is the publication of original research in Applied and Computational Mathematics, with interfaces in Physics, Engineering, Chemistry, Biology, Operations Research, Statistics, Social Sciences and Economy. The journal has the usual quality standards of scientific international journals and we aim high level of contributions in terms of originality, depth and relevance.
期刊最新文献
Two efficient nonlinear conjugate gradient methods for Riemannian manifolds A new algorithm for approximating solutions of the common variational inclusion On some extension of Traub–Steffensen type methods in Banach spaces Neighbourhood and competition graphs under fuzzy incidence graph and its application Chebyshev polynomial derivative-based spectral tau approach for solving high-order differential equations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1