基于小分子供体的热稳定形态高效有机太阳能电池†.

IF 5.5 1区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Chinese Journal of Chemistry Pub Date : 2024-08-01 DOI:10.1002/cjoc.202400573
Wanying Feng, Yuyang Bai, Jiaying Wang, Shaohui Yuan, Xiangjian Wan, Yu Chen, Bin Kan, Yongsheng Chen
{"title":"基于小分子供体的热稳定形态高效有机太阳能电池†.","authors":"Wanying Feng,&nbsp;Yuyang Bai,&nbsp;Jiaying Wang,&nbsp;Shaohui Yuan,&nbsp;Xiangjian Wan,&nbsp;Yu Chen,&nbsp;Bin Kan,&nbsp;Yongsheng Chen","doi":"10.1002/cjoc.202400573","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Small-molecular organic solar cells usually exhibited unsatisfactory device stability, which might originate from their molecular diffusion behaviors. Herein, based on the all-small-molecule system HD-1:BTP-eC9, we reported a dimerized acceptor DC9, and its corresponding monomer acceptor eOD. In comparison with eOD, the dimeric acceptor DC9 displayed higher glass transition temperature (<i>T</i><sub>g</sub>) but reduced molecular planarity and crystallinity. The all-small molecule blend utilizing HD-1:eOD demonstrated a power conversion efficiency (PCE) of 15.13%, surpassing the value of 14.10% for the HD-1:DC9 blend. While, incorporating polymer donor PM6 into the HD-1:DC9 blend improved its morphology and charge transport dynamics, resulting in a device efficiency of over 16%, representing the rare case utilizing small-molecular donor and dimeric acceptor with PCE over 16%. Morphological characterization results affirmed that the surface morphologies and molecular packing behaviors of the blend films based on HD-1 were largely retained even after prolonged annealing and aging at 85 °C. Consequently, the PCEs of the blend films based on HD-1:eOD, HD-1:DC9, and HD-1:PM6:DC9 consistently remained over 98% of their initial efficiency after 1000 h of thermal annealing aging at 85 °C. These findings highlight the potential of small-molecular based active layer in the fabrication of efficient and stable OSCs.</p>\n <p>\n </p>\n </div>","PeriodicalId":151,"journal":{"name":"Chinese Journal of Chemistry","volume":"42 23","pages":"3075-3082"},"PeriodicalIF":5.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Small-Molecular Donor Based Efficient Organic Solar Cells with Thermally Stable Morphologies†\",\"authors\":\"Wanying Feng,&nbsp;Yuyang Bai,&nbsp;Jiaying Wang,&nbsp;Shaohui Yuan,&nbsp;Xiangjian Wan,&nbsp;Yu Chen,&nbsp;Bin Kan,&nbsp;Yongsheng Chen\",\"doi\":\"10.1002/cjoc.202400573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Small-molecular organic solar cells usually exhibited unsatisfactory device stability, which might originate from their molecular diffusion behaviors. Herein, based on the all-small-molecule system HD-1:BTP-eC9, we reported a dimerized acceptor DC9, and its corresponding monomer acceptor eOD. In comparison with eOD, the dimeric acceptor DC9 displayed higher glass transition temperature (<i>T</i><sub>g</sub>) but reduced molecular planarity and crystallinity. The all-small molecule blend utilizing HD-1:eOD demonstrated a power conversion efficiency (PCE) of 15.13%, surpassing the value of 14.10% for the HD-1:DC9 blend. While, incorporating polymer donor PM6 into the HD-1:DC9 blend improved its morphology and charge transport dynamics, resulting in a device efficiency of over 16%, representing the rare case utilizing small-molecular donor and dimeric acceptor with PCE over 16%. Morphological characterization results affirmed that the surface morphologies and molecular packing behaviors of the blend films based on HD-1 were largely retained even after prolonged annealing and aging at 85 °C. Consequently, the PCEs of the blend films based on HD-1:eOD, HD-1:DC9, and HD-1:PM6:DC9 consistently remained over 98% of their initial efficiency after 1000 h of thermal annealing aging at 85 °C. These findings highlight the potential of small-molecular based active layer in the fabrication of efficient and stable OSCs.</p>\\n <p>\\n </p>\\n </div>\",\"PeriodicalId\":151,\"journal\":{\"name\":\"Chinese Journal of Chemistry\",\"volume\":\"42 23\",\"pages\":\"3075-3082\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cjoc.202400573\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjoc.202400573","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

综合摘要小分子有机太阳能电池通常表现出不尽人意的器件稳定性,这可能源于它们的分子扩散行为。本文基于全小分子体系 HD-1:BTP-eC9,报道了二聚受体 DC9 及其相应的单体受体 eOD。与 eOD 相比,二聚受体 DC9 显示出更高的玻璃化转变温度(Tg),但分子平面度和结晶度却有所降低。利用 HD-1:eOD 的全小分子混合物的功率转换效率(PCE)为 15.13%,超过了 HD-1:DC9 混合物的 14.10%。而在 HD-1:DC9 混合物中加入聚合物供体 PM6 则改善了其形态和电荷传输动力学,使器件效率超过 16%,是利用小分子供体和二聚受体实现 PCE 超过 16% 的罕见案例。形态学表征结果证实,基于 HD-1 的混合薄膜的表面形态和分子堆积行为即使在 85 ℃ 下长时间退火和老化后也基本保持不变。因此,基于 HD-1:eOD、HD-1:DC9 和 HD-1:PM6:DC9 的混合薄膜的 PCE 在 85 °C 下经过 1000 小时的热退火老化后,始终保持在其初始效率的 98% 以上。这些发现凸显了基于小分子的活性层在制造高效稳定的 OSC 方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Small-Molecular Donor Based Efficient Organic Solar Cells with Thermally Stable Morphologies†

Small-molecular organic solar cells usually exhibited unsatisfactory device stability, which might originate from their molecular diffusion behaviors. Herein, based on the all-small-molecule system HD-1:BTP-eC9, we reported a dimerized acceptor DC9, and its corresponding monomer acceptor eOD. In comparison with eOD, the dimeric acceptor DC9 displayed higher glass transition temperature (Tg) but reduced molecular planarity and crystallinity. The all-small molecule blend utilizing HD-1:eOD demonstrated a power conversion efficiency (PCE) of 15.13%, surpassing the value of 14.10% for the HD-1:DC9 blend. While, incorporating polymer donor PM6 into the HD-1:DC9 blend improved its morphology and charge transport dynamics, resulting in a device efficiency of over 16%, representing the rare case utilizing small-molecular donor and dimeric acceptor with PCE over 16%. Morphological characterization results affirmed that the surface morphologies and molecular packing behaviors of the blend films based on HD-1 were largely retained even after prolonged annealing and aging at 85 °C. Consequently, the PCEs of the blend films based on HD-1:eOD, HD-1:DC9, and HD-1:PM6:DC9 consistently remained over 98% of their initial efficiency after 1000 h of thermal annealing aging at 85 °C. These findings highlight the potential of small-molecular based active layer in the fabrication of efficient and stable OSCs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chinese Journal of Chemistry
Chinese Journal of Chemistry 化学-化学综合
CiteScore
8.80
自引率
14.80%
发文量
422
审稿时长
1.7 months
期刊介绍: The Chinese Journal of Chemistry is an international forum for peer-reviewed original research results in all fields of chemistry. Founded in 1983 under the name Acta Chimica Sinica English Edition and renamed in 1990 as Chinese Journal of Chemistry, the journal publishes a stimulating mixture of Accounts, Full Papers, Notes and Communications in English.
期刊最新文献
Inside Back Cover Back Cover Contents Cover Picture Meet Our New Associate Editor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1