Nariê Rinke Dias de Souza, Marisa Groenestege, Jurjen Spekreijse, Cláudia Ribeiro, Cristina T. Matos, Massimo Pizzol, Francesco Cherubini
{"title":"欧洲可持续生物基化学品行业面临的挑战和机遇","authors":"Nariê Rinke Dias de Souza, Marisa Groenestege, Jurjen Spekreijse, Cláudia Ribeiro, Cristina T. Matos, Massimo Pizzol, Francesco Cherubini","doi":"10.1002/wene.534","DOIUrl":null,"url":null,"abstract":"The chemical sector is the fourth largest industry in the European Union (EU) and the second largest chemical producer globally. However, its global share in chemicals sales has declined from 25% two decades ago to around 14% now. The sector, which accounts for 22% of the EU industry's energy demands, faces significant challenges in mitigating climate change, reducing pollution and toxicity, and improving circularity. Biomass, a promising renewable feedstock, currently represents only 3% of the sector's feedstocks. This review explores the opportunities and challenges for a bio‐based chemical sector in the EU, particularly plastics, to improve circularity and contribute to climate neutrality, reduction of pollution and toxicity. It provides an overview of current fossil‐based feedstocks, production processes, country‐specific trends, bio‐based production, and sustainability initiatives. Exploring new feedstocks such as lignin, organic residues, and algae can increase biomass availability toward a circular bioeconomy. Integrating chemicals and plastics production into commercial pulp and power factories, biofuel plants, and the sustainable hydrogen economy could boost the sector. Hydrogen is crucial for reducing biomass's oxygen content. These can ultimately contribute to reduce climate change impacts. Designing novel chemicals and plastics to accommodate biomass's higher oxygen content, reduce toxicity, and enhance biodegradability is essential. However, plastic waste mismanagement cannot be solved by merely replacing fossil feedstocks with biomass. Sustainability initiatives can strengthen and develop a circular bio‐based chemical sector, but better management of bio‐based plastic waste and transparent labeling of bio‐based products are needed. This calls for collaborative efforts among citizens, academia, policymakers, and industry.This article is categorized under:<jats:list list-type=\"simple\"> <jats:list-item>Climate and Environment > Circular Economy</jats:list-item> <jats:list-item>Climate and Environment > Net Zero Planning and Decarbonization</jats:list-item> <jats:list-item>Emerging Technologies > Materials</jats:list-item> </jats:list>","PeriodicalId":48766,"journal":{"name":"Wiley Interdisciplinary Reviews-Energy and Environment","volume":"74 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Challenges and opportunities toward a sustainable bio‐based chemical sector in Europe\",\"authors\":\"Nariê Rinke Dias de Souza, Marisa Groenestege, Jurjen Spekreijse, Cláudia Ribeiro, Cristina T. Matos, Massimo Pizzol, Francesco Cherubini\",\"doi\":\"10.1002/wene.534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The chemical sector is the fourth largest industry in the European Union (EU) and the second largest chemical producer globally. However, its global share in chemicals sales has declined from 25% two decades ago to around 14% now. The sector, which accounts for 22% of the EU industry's energy demands, faces significant challenges in mitigating climate change, reducing pollution and toxicity, and improving circularity. Biomass, a promising renewable feedstock, currently represents only 3% of the sector's feedstocks. This review explores the opportunities and challenges for a bio‐based chemical sector in the EU, particularly plastics, to improve circularity and contribute to climate neutrality, reduction of pollution and toxicity. It provides an overview of current fossil‐based feedstocks, production processes, country‐specific trends, bio‐based production, and sustainability initiatives. Exploring new feedstocks such as lignin, organic residues, and algae can increase biomass availability toward a circular bioeconomy. Integrating chemicals and plastics production into commercial pulp and power factories, biofuel plants, and the sustainable hydrogen economy could boost the sector. Hydrogen is crucial for reducing biomass's oxygen content. These can ultimately contribute to reduce climate change impacts. Designing novel chemicals and plastics to accommodate biomass's higher oxygen content, reduce toxicity, and enhance biodegradability is essential. However, plastic waste mismanagement cannot be solved by merely replacing fossil feedstocks with biomass. Sustainability initiatives can strengthen and develop a circular bio‐based chemical sector, but better management of bio‐based plastic waste and transparent labeling of bio‐based products are needed. This calls for collaborative efforts among citizens, academia, policymakers, and industry.This article is categorized under:<jats:list list-type=\\\"simple\\\"> <jats:list-item>Climate and Environment > Circular Economy</jats:list-item> <jats:list-item>Climate and Environment > Net Zero Planning and Decarbonization</jats:list-item> <jats:list-item>Emerging Technologies > Materials</jats:list-item> </jats:list>\",\"PeriodicalId\":48766,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews-Energy and Environment\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews-Energy and Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/wene.534\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Energy and Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/wene.534","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Challenges and opportunities toward a sustainable bio‐based chemical sector in Europe
The chemical sector is the fourth largest industry in the European Union (EU) and the second largest chemical producer globally. However, its global share in chemicals sales has declined from 25% two decades ago to around 14% now. The sector, which accounts for 22% of the EU industry's energy demands, faces significant challenges in mitigating climate change, reducing pollution and toxicity, and improving circularity. Biomass, a promising renewable feedstock, currently represents only 3% of the sector's feedstocks. This review explores the opportunities and challenges for a bio‐based chemical sector in the EU, particularly plastics, to improve circularity and contribute to climate neutrality, reduction of pollution and toxicity. It provides an overview of current fossil‐based feedstocks, production processes, country‐specific trends, bio‐based production, and sustainability initiatives. Exploring new feedstocks such as lignin, organic residues, and algae can increase biomass availability toward a circular bioeconomy. Integrating chemicals and plastics production into commercial pulp and power factories, biofuel plants, and the sustainable hydrogen economy could boost the sector. Hydrogen is crucial for reducing biomass's oxygen content. These can ultimately contribute to reduce climate change impacts. Designing novel chemicals and plastics to accommodate biomass's higher oxygen content, reduce toxicity, and enhance biodegradability is essential. However, plastic waste mismanagement cannot be solved by merely replacing fossil feedstocks with biomass. Sustainability initiatives can strengthen and develop a circular bio‐based chemical sector, but better management of bio‐based plastic waste and transparent labeling of bio‐based products are needed. This calls for collaborative efforts among citizens, academia, policymakers, and industry.This article is categorized under:Climate and Environment > Circular EconomyClimate and Environment > Net Zero Planning and DecarbonizationEmerging Technologies > Materials
期刊介绍:
Wiley Interdisciplinary Reviews: Energy and Environmentis a new type of review journal covering all aspects of energy technology, security and environmental impact.
Energy is one of the most critical resources for the welfare and prosperity of society. It also causes adverse environmental and societal effects, notably climate change which is the severest global problem in the modern age. Finding satisfactory solutions to the challenges ahead will need a linking of energy technology innovations, security, energy poverty, and environmental and climate impacts. The broad scope of energy issues demands collaboration between different disciplines of science and technology, and strong interaction between engineering, physical and life scientists, economists, sociologists and policy-makers.