Mario Garza-Fabre, Cristian C. Erazo-Agredo, Javier Rubio-Loyola
{"title":"下一代无线通信中改进联合路由选择和分层管理的记忆算法","authors":"Mario Garza-Fabre, Cristian C. Erazo-Agredo, Javier Rubio-Loyola","doi":"10.1007/s12293-024-00418-2","DOIUrl":null,"url":null,"abstract":"<p>The complexity of next-generation wireless communications, especially Beyond 5G and 6G communication systems, will be handled by artificial intelligence-based management paradigms. The joint selection of routes and functional split levels involves critical decisions that network infrastructure providers need to make to support requests from virtual Mobile Network Operators (vMNOs). These decisions comprise the assignment and configuration of physical network resources, which must comply with the specific quality of service restrictions of each vMNO request. Recent work defined a detailed mathematical model for this complex challenge, its formulation as a constrained, discrete optimization problem, and the first algorithmic approaches. It was also found that an evolutionary algorithm delivers higher-quality solutions than an <i>ad-hoc</i> heuristic, and faster running times compared to a well-known commercial solver. This paper introduces a memetic algorithm that exploits the strengths of the former evolutionary method while incorporating several key innovations: a domain-specific recombination operator; a specialized repairing procedure; an enhanced fitness evaluation scheme; and a multiobjective archiving strategy that preserves promising solution trade-offs. We conduct a comprehensive evaluation of the performance and behavior of this proposal, as well as the contribution of each specific design component. The results highlight that our memetic algorithm consistently outperforms previous approaches from the literature, providing better trade-offs in terms of solution quality and the rate at which vMNO requests are successfully fulfilled.</p>","PeriodicalId":48780,"journal":{"name":"Memetic Computing","volume":"55 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A memetic algorithm for improved joint route selection and split-level management in next-generation wireless communications\",\"authors\":\"Mario Garza-Fabre, Cristian C. Erazo-Agredo, Javier Rubio-Loyola\",\"doi\":\"10.1007/s12293-024-00418-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The complexity of next-generation wireless communications, especially Beyond 5G and 6G communication systems, will be handled by artificial intelligence-based management paradigms. The joint selection of routes and functional split levels involves critical decisions that network infrastructure providers need to make to support requests from virtual Mobile Network Operators (vMNOs). These decisions comprise the assignment and configuration of physical network resources, which must comply with the specific quality of service restrictions of each vMNO request. Recent work defined a detailed mathematical model for this complex challenge, its formulation as a constrained, discrete optimization problem, and the first algorithmic approaches. It was also found that an evolutionary algorithm delivers higher-quality solutions than an <i>ad-hoc</i> heuristic, and faster running times compared to a well-known commercial solver. This paper introduces a memetic algorithm that exploits the strengths of the former evolutionary method while incorporating several key innovations: a domain-specific recombination operator; a specialized repairing procedure; an enhanced fitness evaluation scheme; and a multiobjective archiving strategy that preserves promising solution trade-offs. We conduct a comprehensive evaluation of the performance and behavior of this proposal, as well as the contribution of each specific design component. The results highlight that our memetic algorithm consistently outperforms previous approaches from the literature, providing better trade-offs in terms of solution quality and the rate at which vMNO requests are successfully fulfilled.</p>\",\"PeriodicalId\":48780,\"journal\":{\"name\":\"Memetic Computing\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Memetic Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s12293-024-00418-2\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Memetic Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12293-024-00418-2","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A memetic algorithm for improved joint route selection and split-level management in next-generation wireless communications
The complexity of next-generation wireless communications, especially Beyond 5G and 6G communication systems, will be handled by artificial intelligence-based management paradigms. The joint selection of routes and functional split levels involves critical decisions that network infrastructure providers need to make to support requests from virtual Mobile Network Operators (vMNOs). These decisions comprise the assignment and configuration of physical network resources, which must comply with the specific quality of service restrictions of each vMNO request. Recent work defined a detailed mathematical model for this complex challenge, its formulation as a constrained, discrete optimization problem, and the first algorithmic approaches. It was also found that an evolutionary algorithm delivers higher-quality solutions than an ad-hoc heuristic, and faster running times compared to a well-known commercial solver. This paper introduces a memetic algorithm that exploits the strengths of the former evolutionary method while incorporating several key innovations: a domain-specific recombination operator; a specialized repairing procedure; an enhanced fitness evaluation scheme; and a multiobjective archiving strategy that preserves promising solution trade-offs. We conduct a comprehensive evaluation of the performance and behavior of this proposal, as well as the contribution of each specific design component. The results highlight that our memetic algorithm consistently outperforms previous approaches from the literature, providing better trade-offs in terms of solution quality and the rate at which vMNO requests are successfully fulfilled.
Memetic ComputingCOMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-OPERATIONS RESEARCH & MANAGEMENT SCIENCE
CiteScore
6.80
自引率
12.80%
发文量
31
期刊介绍:
Memes have been defined as basic units of transferrable information that reside in the brain and are propagated across populations through the process of imitation. From an algorithmic point of view, memes have come to be regarded as building-blocks of prior knowledge, expressed in arbitrary computational representations (e.g., local search heuristics, fuzzy rules, neural models, etc.), that have been acquired through experience by a human or machine, and can be imitated (i.e., reused) across problems.
The Memetic Computing journal welcomes papers incorporating the aforementioned socio-cultural notion of memes into artificial systems, with particular emphasis on enhancing the efficacy of computational and artificial intelligence techniques for search, optimization, and machine learning through explicit prior knowledge incorporation. The goal of the journal is to thus be an outlet for high quality theoretical and applied research on hybrid, knowledge-driven computational approaches that may be characterized under any of the following categories of memetics:
Type 1: General-purpose algorithms integrated with human-crafted heuristics that capture some form of prior domain knowledge; e.g., traditional memetic algorithms hybridizing evolutionary global search with a problem-specific local search.
Type 2: Algorithms with the ability to automatically select, adapt, and reuse the most appropriate heuristics from a diverse pool of available choices; e.g., learning a mapping between global search operators and multiple local search schemes, given an optimization problem at hand.
Type 3: Algorithms that autonomously learn with experience, adaptively reusing data and/or machine learning models drawn from related problems as prior knowledge in new target tasks of interest; examples include, but are not limited to, transfer learning and optimization, multi-task learning and optimization, or any other multi-X evolutionary learning and optimization methodologies.