下一代无线通信中改进联合路由选择和分层管理的记忆算法

IF 3.3 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Memetic Computing Pub Date : 2024-08-02 DOI:10.1007/s12293-024-00418-2
Mario Garza-Fabre, Cristian C. Erazo-Agredo, Javier Rubio-Loyola
{"title":"下一代无线通信中改进联合路由选择和分层管理的记忆算法","authors":"Mario Garza-Fabre, Cristian C. Erazo-Agredo, Javier Rubio-Loyola","doi":"10.1007/s12293-024-00418-2","DOIUrl":null,"url":null,"abstract":"<p>The complexity of next-generation wireless communications, especially Beyond 5G and 6G communication systems, will be handled by artificial intelligence-based management paradigms. The joint selection of routes and functional split levels involves critical decisions that network infrastructure providers need to make to support requests from virtual Mobile Network Operators (vMNOs). These decisions comprise the assignment and configuration of physical network resources, which must comply with the specific quality of service restrictions of each vMNO request. Recent work defined a detailed mathematical model for this complex challenge, its formulation as a constrained, discrete optimization problem, and the first algorithmic approaches. It was also found that an evolutionary algorithm delivers higher-quality solutions than an <i>ad-hoc</i> heuristic, and faster running times compared to a well-known commercial solver. This paper introduces a memetic algorithm that exploits the strengths of the former evolutionary method while incorporating several key innovations: a domain-specific recombination operator; a specialized repairing procedure; an enhanced fitness evaluation scheme; and a multiobjective archiving strategy that preserves promising solution trade-offs. We conduct a comprehensive evaluation of the performance and behavior of this proposal, as well as the contribution of each specific design component. The results highlight that our memetic algorithm consistently outperforms previous approaches from the literature, providing better trade-offs in terms of solution quality and the rate at which vMNO requests are successfully fulfilled.</p>","PeriodicalId":48780,"journal":{"name":"Memetic Computing","volume":"55 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A memetic algorithm for improved joint route selection and split-level management in next-generation wireless communications\",\"authors\":\"Mario Garza-Fabre, Cristian C. Erazo-Agredo, Javier Rubio-Loyola\",\"doi\":\"10.1007/s12293-024-00418-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The complexity of next-generation wireless communications, especially Beyond 5G and 6G communication systems, will be handled by artificial intelligence-based management paradigms. The joint selection of routes and functional split levels involves critical decisions that network infrastructure providers need to make to support requests from virtual Mobile Network Operators (vMNOs). These decisions comprise the assignment and configuration of physical network resources, which must comply with the specific quality of service restrictions of each vMNO request. Recent work defined a detailed mathematical model for this complex challenge, its formulation as a constrained, discrete optimization problem, and the first algorithmic approaches. It was also found that an evolutionary algorithm delivers higher-quality solutions than an <i>ad-hoc</i> heuristic, and faster running times compared to a well-known commercial solver. This paper introduces a memetic algorithm that exploits the strengths of the former evolutionary method while incorporating several key innovations: a domain-specific recombination operator; a specialized repairing procedure; an enhanced fitness evaluation scheme; and a multiobjective archiving strategy that preserves promising solution trade-offs. We conduct a comprehensive evaluation of the performance and behavior of this proposal, as well as the contribution of each specific design component. The results highlight that our memetic algorithm consistently outperforms previous approaches from the literature, providing better trade-offs in terms of solution quality and the rate at which vMNO requests are successfully fulfilled.</p>\",\"PeriodicalId\":48780,\"journal\":{\"name\":\"Memetic Computing\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Memetic Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s12293-024-00418-2\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Memetic Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12293-024-00418-2","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

下一代无线通信,尤其是超越 5G 和 6G 通信系统的复杂性将由基于人工智能的管理模式来处理。路由和功能分级的联合选择涉及网络基础设施提供商为支持虚拟移动网络运营商(vMNO)的请求而需要做出的关键决策。这些决策包括物理网络资源的分配和配置,必须符合每个虚拟移动网络运营商请求的特定服务质量限制。最近的工作为这一复杂挑战定义了一个详细的数学模型,将其表述为一个受约束的离散优化问题,并首次提出了算法方法。研究还发现,与临时启发式算法相比,进化式算法能提供更高质量的解决方案,与著名的商业求解器相比,运行时间更短。本文介绍了一种记忆算法,它利用了前一种进化方法的优势,同时融入了几项关键创新:特定领域的重组算子;专门的修复程序;增强的适配性评估方案;以及可保留有希望的解决方案权衡的多目标归档策略。我们对这一建议的性能和行为以及每个特定设计组件的贡献进行了全面评估。结果表明,我们的记忆算法始终优于以往的文献方法,在解决方案质量和 vMNO 请求成功满足率方面提供了更好的权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A memetic algorithm for improved joint route selection and split-level management in next-generation wireless communications

The complexity of next-generation wireless communications, especially Beyond 5G and 6G communication systems, will be handled by artificial intelligence-based management paradigms. The joint selection of routes and functional split levels involves critical decisions that network infrastructure providers need to make to support requests from virtual Mobile Network Operators (vMNOs). These decisions comprise the assignment and configuration of physical network resources, which must comply with the specific quality of service restrictions of each vMNO request. Recent work defined a detailed mathematical model for this complex challenge, its formulation as a constrained, discrete optimization problem, and the first algorithmic approaches. It was also found that an evolutionary algorithm delivers higher-quality solutions than an ad-hoc heuristic, and faster running times compared to a well-known commercial solver. This paper introduces a memetic algorithm that exploits the strengths of the former evolutionary method while incorporating several key innovations: a domain-specific recombination operator; a specialized repairing procedure; an enhanced fitness evaluation scheme; and a multiobjective archiving strategy that preserves promising solution trade-offs. We conduct a comprehensive evaluation of the performance and behavior of this proposal, as well as the contribution of each specific design component. The results highlight that our memetic algorithm consistently outperforms previous approaches from the literature, providing better trade-offs in terms of solution quality and the rate at which vMNO requests are successfully fulfilled.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Memetic Computing
Memetic Computing COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-OPERATIONS RESEARCH & MANAGEMENT SCIENCE
CiteScore
6.80
自引率
12.80%
发文量
31
期刊介绍: Memes have been defined as basic units of transferrable information that reside in the brain and are propagated across populations through the process of imitation. From an algorithmic point of view, memes have come to be regarded as building-blocks of prior knowledge, expressed in arbitrary computational representations (e.g., local search heuristics, fuzzy rules, neural models, etc.), that have been acquired through experience by a human or machine, and can be imitated (i.e., reused) across problems. The Memetic Computing journal welcomes papers incorporating the aforementioned socio-cultural notion of memes into artificial systems, with particular emphasis on enhancing the efficacy of computational and artificial intelligence techniques for search, optimization, and machine learning through explicit prior knowledge incorporation. The goal of the journal is to thus be an outlet for high quality theoretical and applied research on hybrid, knowledge-driven computational approaches that may be characterized under any of the following categories of memetics: Type 1: General-purpose algorithms integrated with human-crafted heuristics that capture some form of prior domain knowledge; e.g., traditional memetic algorithms hybridizing evolutionary global search with a problem-specific local search. Type 2: Algorithms with the ability to automatically select, adapt, and reuse the most appropriate heuristics from a diverse pool of available choices; e.g., learning a mapping between global search operators and multiple local search schemes, given an optimization problem at hand. Type 3: Algorithms that autonomously learn with experience, adaptively reusing data and/or machine learning models drawn from related problems as prior knowledge in new target tasks of interest; examples include, but are not limited to, transfer learning and optimization, multi-task learning and optimization, or any other multi-X evolutionary learning and optimization methodologies.
期刊最新文献
ResGAT: Residual Graph Attention Networks for molecular property prediction Enhancing online yard crane scheduling through a two-stage rollout memetic genetic programming Proximal evolutionary strategy: improving deep reinforcement learning through evolutionary policy optimization Where does the crude oil originate? The role of near-infrared spectroscopy in accurate source detection Bootstrap contrastive domain adaptation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1