MOSCA 2.0:用于元基因组学、元转录组学和元蛋白质组学数据分析和可视化的生物信息学框架。

IF 5.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Ecology Resources Pub Date : 2024-08-04 DOI:10.1111/1755-0998.13996
João C. Sequeira, Vítor Pereira, M. Madalena Alves, M. Alcina Pereira, Miguel Rocha, Andreia F. Salvador
{"title":"MOSCA 2.0:用于元基因组学、元转录组学和元蛋白质组学数据分析和可视化的生物信息学框架。","authors":"João C. Sequeira,&nbsp;Vítor Pereira,&nbsp;M. Madalena Alves,&nbsp;M. Alcina Pereira,&nbsp;Miguel Rocha,&nbsp;Andreia F. Salvador","doi":"10.1111/1755-0998.13996","DOIUrl":null,"url":null,"abstract":"<p>The analysis of meta-omics data requires the utilization of several bioinformatics tools and proficiency in informatics. The integration of multiple meta-omics data is even more challenging, and the outputs of existing bioinformatics solutions are not always easy to interpret. Here, we present a meta-omics bioinformatics pipeline, Meta-Omics Software for Community Analysis (MOSCA), which aims to overcome these limitations. MOSCA was initially developed for analysing metagenomics (MG) and metatranscriptomics (MT) data. Now, it also performs MG and metaproteomics (MP) integrated analysis, and MG/MT analysis was upgraded with an additional iterative binning step, metabolic pathways mapping, and several improvements regarding functional annotation and data visualization. MOSCA handles raw sequencing data and mass spectra and performs pre-processing, assembly, annotation, binning and differential gene/protein expression analysis. MOSCA shows taxonomic and functional analysis in large tables, performs metabolic pathways mapping, generates Krona plots and shows gene/protein expression results in heatmaps, improving omics data visualization. MOSCA is easily run from a single command while also providing a web interface (MOSGUITO). Relevant features include an extensive set of customization options, allowing tailored analyses to suit specific research objectives, and the ability to restart the pipeline from intermediary checkpoints using alternative configurations. Two case studies showcased MOSCA results, giving a complete view of the anaerobic microbial communities from anaerobic digesters and insights on the role of specific microorganisms. MOSCA represents a pivotal advancement in meta-omics research, offering an intuitive, comprehensive, and versatile solution for researchers seeking to unravel the intricate tapestry of microbial communities.</p>","PeriodicalId":211,"journal":{"name":"Molecular Ecology Resources","volume":"24 7","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MOSCA 2.0: A bioinformatics framework for metagenomics, metatranscriptomics and metaproteomics data analysis and visualization\",\"authors\":\"João C. Sequeira,&nbsp;Vítor Pereira,&nbsp;M. Madalena Alves,&nbsp;M. Alcina Pereira,&nbsp;Miguel Rocha,&nbsp;Andreia F. Salvador\",\"doi\":\"10.1111/1755-0998.13996\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The analysis of meta-omics data requires the utilization of several bioinformatics tools and proficiency in informatics. The integration of multiple meta-omics data is even more challenging, and the outputs of existing bioinformatics solutions are not always easy to interpret. Here, we present a meta-omics bioinformatics pipeline, Meta-Omics Software for Community Analysis (MOSCA), which aims to overcome these limitations. MOSCA was initially developed for analysing metagenomics (MG) and metatranscriptomics (MT) data. Now, it also performs MG and metaproteomics (MP) integrated analysis, and MG/MT analysis was upgraded with an additional iterative binning step, metabolic pathways mapping, and several improvements regarding functional annotation and data visualization. MOSCA handles raw sequencing data and mass spectra and performs pre-processing, assembly, annotation, binning and differential gene/protein expression analysis. MOSCA shows taxonomic and functional analysis in large tables, performs metabolic pathways mapping, generates Krona plots and shows gene/protein expression results in heatmaps, improving omics data visualization. MOSCA is easily run from a single command while also providing a web interface (MOSGUITO). Relevant features include an extensive set of customization options, allowing tailored analyses to suit specific research objectives, and the ability to restart the pipeline from intermediary checkpoints using alternative configurations. Two case studies showcased MOSCA results, giving a complete view of the anaerobic microbial communities from anaerobic digesters and insights on the role of specific microorganisms. MOSCA represents a pivotal advancement in meta-omics research, offering an intuitive, comprehensive, and versatile solution for researchers seeking to unravel the intricate tapestry of microbial communities.</p>\",\"PeriodicalId\":211,\"journal\":{\"name\":\"Molecular Ecology Resources\",\"volume\":\"24 7\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Ecology Resources\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1755-0998.13996\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology Resources","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1755-0998.13996","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

分析元组学数据需要利用多种生物信息学工具和熟练的信息学知识。整合多个元组学数据更具挑战性,而且现有生物信息学解决方案的输出结果并不总是易于解读。在此,我们介绍一种元组学生物信息学管道--用于群落分析的元组学软件(MOSCA),旨在克服这些局限性。MOSCA 最初是为分析元基因组学(MG)和元转录组学(MT)数据而开发的。现在,它还能进行元基因组学(MG)和元蛋白质组学(MP)的综合分析,并对 MG/MT 分析进行了升级,增加了迭代分选步骤、代谢途径映射以及功能注释和数据可视化方面的一些改进。MOSCA 可处理原始测序数据和质谱,并进行预处理、组装、注释、分选和差异基因/蛋白表达分析。MOSCA 可在大型表格中显示分类和功能分析结果,绘制代谢通路图,生成 Krona 图,并在热图中显示基因/蛋白质表达结果,从而改进 omics 数据的可视化。MOSCA 可通过单个命令轻松运行,同时还提供网络界面(MOSGUITO)。相关功能包括一系列广泛的定制选项,可根据特定研究目标进行定制分析,还能使用其他配置从中间检查点重新启动管道。两个案例研究展示了 MOSCA 的成果,提供了厌氧消化器厌氧微生物群落的完整视图,以及对特定微生物作用的深入了解。MOSCA 代表了元组学研究的一个关键进步,为寻求揭开错综复杂的微生物群落织锦的研究人员提供了一个直观、全面和多功能的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MOSCA 2.0: A bioinformatics framework for metagenomics, metatranscriptomics and metaproteomics data analysis and visualization

The analysis of meta-omics data requires the utilization of several bioinformatics tools and proficiency in informatics. The integration of multiple meta-omics data is even more challenging, and the outputs of existing bioinformatics solutions are not always easy to interpret. Here, we present a meta-omics bioinformatics pipeline, Meta-Omics Software for Community Analysis (MOSCA), which aims to overcome these limitations. MOSCA was initially developed for analysing metagenomics (MG) and metatranscriptomics (MT) data. Now, it also performs MG and metaproteomics (MP) integrated analysis, and MG/MT analysis was upgraded with an additional iterative binning step, metabolic pathways mapping, and several improvements regarding functional annotation and data visualization. MOSCA handles raw sequencing data and mass spectra and performs pre-processing, assembly, annotation, binning and differential gene/protein expression analysis. MOSCA shows taxonomic and functional analysis in large tables, performs metabolic pathways mapping, generates Krona plots and shows gene/protein expression results in heatmaps, improving omics data visualization. MOSCA is easily run from a single command while also providing a web interface (MOSGUITO). Relevant features include an extensive set of customization options, allowing tailored analyses to suit specific research objectives, and the ability to restart the pipeline from intermediary checkpoints using alternative configurations. Two case studies showcased MOSCA results, giving a complete view of the anaerobic microbial communities from anaerobic digesters and insights on the role of specific microorganisms. MOSCA represents a pivotal advancement in meta-omics research, offering an intuitive, comprehensive, and versatile solution for researchers seeking to unravel the intricate tapestry of microbial communities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Ecology Resources
Molecular Ecology Resources 生物-进化生物学
CiteScore
15.60
自引率
5.20%
发文量
170
审稿时长
3 months
期刊介绍: Molecular Ecology Resources promotes the creation of comprehensive resources for the scientific community, encompassing computer programs, statistical and molecular advancements, and a diverse array of molecular tools. Serving as a conduit for disseminating these resources, the journal targets a broad audience of researchers in the fields of evolution, ecology, and conservation. Articles in Molecular Ecology Resources are crafted to support investigations tackling significant questions within these disciplines. In addition to original resource articles, Molecular Ecology Resources features Reviews, Opinions, and Comments relevant to the field. The journal also periodically releases Special Issues focusing on resource development within specific areas.
期刊最新文献
Chromosomal-Level Genome Suggests Adaptive Constraints Leading to the Historical Population Decline in an Extremely Endangered Plant. Development of SNP Panels from Low-Coverage Whole Genome Sequencing (lcWGS) to Support Indigenous Fisheries for Three Salmonid Species in Northern Canada. Probe Capture Enrichment Sequencing of amoA Genes Improves the Detection of Diverse Ammonia-Oxidising Archaeal and Bacterial Populations. HMicroDB: A Comprehensive Database of Herpetofaunal Microbiota With a Focus on Host Phylogeny, Physiological Traits, and Environment Factors. OGU: A Toolbox for Better Utilising Organelle Genomic Data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1