使用摄像机或可穿戴传感器预测步态过程中膝关节接触力峰值

IF 3 2区 医学 Q3 ENGINEERING, BIOMEDICAL Annals of Biomedical Engineering Pub Date : 2024-08-03 DOI:10.1007/s10439-024-03594-x
Jere Lavikainen, Lauri Stenroth, Paavo Vartiainen, Tine Alkjær, Pasi A. Karjalainen, Marius Henriksen, Rami K. Korhonen, Mimmi Liukkonen, Mika E. Mononen
{"title":"使用摄像机或可穿戴传感器预测步态过程中膝关节接触力峰值","authors":"Jere Lavikainen,&nbsp;Lauri Stenroth,&nbsp;Paavo Vartiainen,&nbsp;Tine Alkjær,&nbsp;Pasi A. Karjalainen,&nbsp;Marius Henriksen,&nbsp;Rami K. Korhonen,&nbsp;Mimmi Liukkonen,&nbsp;Mika E. Mononen","doi":"10.1007/s10439-024-03594-x","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><p>Estimating loading of the knee joint may be helpful in managing degenerative joint diseases. Contemporary methods to estimate loading involve calculating knee joint contact forces using musculoskeletal modeling and simulation from motion capture (MOCAP) data, which must be collected in a specialized environment and analyzed by a trained expert. To make the estimation of knee joint loading more accessible, simple input predictors should be used for predicting knee joint loading using artificial neural networks.</p><h3>Methods</h3><p>We trained feedforward artificial neural networks (ANNs) to predict knee joint loading peaks from the mass, height, age, sex, walking speed, and knee flexion angle (KFA) of subjects using their existing MOCAP data. We also collected an independent MOCAP dataset while recording walking with a video camera (VC) and inertial measurement units (IMUs). We quantified the prediction accuracy of the ANNs using walking speed and KFA estimates from (1) MOCAP data, (2) VC data, and (3) IMU data separately (i.e., we quantified three sets of prediction accuracy metrics).</p><h3>Results</h3><p>Using portable modalities, we achieved prediction accuracies between 0.13 and 0.37 root mean square error normalized to the mean of the musculoskeletal analysis-based reference values. The correlation between the predicted and reference loading peaks varied between 0.65 and 0.91. This was comparable to the prediction accuracies obtained when obtaining predictors from motion capture data.</p><h3>Discussion</h3><p>The prediction results show that both VCs and IMUs can be used to estimate predictors that can be used in estimating knee joint loading outside the motion laboratory. Future studies should investigate the usability of the methods in an out-of-laboratory setting.</p></div>","PeriodicalId":7986,"journal":{"name":"Annals of Biomedical Engineering","volume":"52 12","pages":"3280 - 3294"},"PeriodicalIF":3.0000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10439-024-03594-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Predicting Knee Joint Contact Force Peaks During Gait Using a Video Camera or Wearable Sensors\",\"authors\":\"Jere Lavikainen,&nbsp;Lauri Stenroth,&nbsp;Paavo Vartiainen,&nbsp;Tine Alkjær,&nbsp;Pasi A. Karjalainen,&nbsp;Marius Henriksen,&nbsp;Rami K. Korhonen,&nbsp;Mimmi Liukkonen,&nbsp;Mika E. Mononen\",\"doi\":\"10.1007/s10439-024-03594-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Purpose</h3><p>Estimating loading of the knee joint may be helpful in managing degenerative joint diseases. Contemporary methods to estimate loading involve calculating knee joint contact forces using musculoskeletal modeling and simulation from motion capture (MOCAP) data, which must be collected in a specialized environment and analyzed by a trained expert. To make the estimation of knee joint loading more accessible, simple input predictors should be used for predicting knee joint loading using artificial neural networks.</p><h3>Methods</h3><p>We trained feedforward artificial neural networks (ANNs) to predict knee joint loading peaks from the mass, height, age, sex, walking speed, and knee flexion angle (KFA) of subjects using their existing MOCAP data. We also collected an independent MOCAP dataset while recording walking with a video camera (VC) and inertial measurement units (IMUs). We quantified the prediction accuracy of the ANNs using walking speed and KFA estimates from (1) MOCAP data, (2) VC data, and (3) IMU data separately (i.e., we quantified three sets of prediction accuracy metrics).</p><h3>Results</h3><p>Using portable modalities, we achieved prediction accuracies between 0.13 and 0.37 root mean square error normalized to the mean of the musculoskeletal analysis-based reference values. The correlation between the predicted and reference loading peaks varied between 0.65 and 0.91. This was comparable to the prediction accuracies obtained when obtaining predictors from motion capture data.</p><h3>Discussion</h3><p>The prediction results show that both VCs and IMUs can be used to estimate predictors that can be used in estimating knee joint loading outside the motion laboratory. Future studies should investigate the usability of the methods in an out-of-laboratory setting.</p></div>\",\"PeriodicalId\":7986,\"journal\":{\"name\":\"Annals of Biomedical Engineering\",\"volume\":\"52 12\",\"pages\":\"3280 - 3294\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10439-024-03594-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10439-024-03594-x\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10439-024-03594-x","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

目的:估算膝关节负荷可能有助于治疗退行性关节疾病。目前估算负荷的方法包括使用肌肉骨骼建模和运动捕捉(MOCAP)数据模拟计算膝关节接触力,这些数据必须在专业环境中收集,并由训练有素的专家进行分析。为了使膝关节负荷的估算更容易操作,应使用简单的输入预测器,利用人工神经网络预测膝关节负荷:方法:我们训练了前馈人工神经网络(ANN),利用受试者现有的 MOCAP 数据,根据受试者的体重、身高、年龄、性别、行走速度和膝关节屈曲角(KFA)预测膝关节负荷峰值。我们还收集了一个独立的 MOCAP 数据集,同时使用摄像机(VC)和惯性测量单元(IMU)记录行走情况。我们使用来自 (1) MOCAP 数据、(2) VC 数据和 (3) IMU 数据的步行速度和 KFA 估计值分别量化了 ANN 的预测准确性(即,我们量化了三套预测准确性指标):使用便携式模式,我们的预测准确度介于 0.13 和 0.37 之间,均方根误差归一化为基于肌肉骨骼分析的参考值的平均值。预测加载峰值与参考加载峰值之间的相关性介于 0.65 和 0.91 之间。这与从运动捕捉数据中获取预测值时获得的预测精度相当:预测结果表明,VC 和 IMU 都可用于估算预测因子,这些预测因子可用于在运动实验室外估算膝关节负荷。未来的研究应调查这些方法在实验室外环境中的可用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting Knee Joint Contact Force Peaks During Gait Using a Video Camera or Wearable Sensors

Purpose

Estimating loading of the knee joint may be helpful in managing degenerative joint diseases. Contemporary methods to estimate loading involve calculating knee joint contact forces using musculoskeletal modeling and simulation from motion capture (MOCAP) data, which must be collected in a specialized environment and analyzed by a trained expert. To make the estimation of knee joint loading more accessible, simple input predictors should be used for predicting knee joint loading using artificial neural networks.

Methods

We trained feedforward artificial neural networks (ANNs) to predict knee joint loading peaks from the mass, height, age, sex, walking speed, and knee flexion angle (KFA) of subjects using their existing MOCAP data. We also collected an independent MOCAP dataset while recording walking with a video camera (VC) and inertial measurement units (IMUs). We quantified the prediction accuracy of the ANNs using walking speed and KFA estimates from (1) MOCAP data, (2) VC data, and (3) IMU data separately (i.e., we quantified three sets of prediction accuracy metrics).

Results

Using portable modalities, we achieved prediction accuracies between 0.13 and 0.37 root mean square error normalized to the mean of the musculoskeletal analysis-based reference values. The correlation between the predicted and reference loading peaks varied between 0.65 and 0.91. This was comparable to the prediction accuracies obtained when obtaining predictors from motion capture data.

Discussion

The prediction results show that both VCs and IMUs can be used to estimate predictors that can be used in estimating knee joint loading outside the motion laboratory. Future studies should investigate the usability of the methods in an out-of-laboratory setting.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Biomedical Engineering
Annals of Biomedical Engineering 工程技术-工程:生物医学
CiteScore
7.50
自引率
15.80%
发文量
212
审稿时长
3 months
期刊介绍: Annals of Biomedical Engineering is an official journal of the Biomedical Engineering Society, publishing original articles in the major fields of bioengineering and biomedical engineering. The Annals is an interdisciplinary and international journal with the aim to highlight integrated approaches to the solutions of biological and biomedical problems.
期刊最新文献
In Silico Clinical Trial for Osteoporosis Treatments to Prevent Hip Fractures: Simulation of the Placebo Arm. A Comparative Analysis of Alpha and Beta Therapy in Prostate Cancer Using a 3D Image-Based Spatiotemporal Model. Statistical Shape Modeling to Determine Poromechanics of the Human Knee Joint. Clinical Validation of Non-invasive Simulation-Based Determination of Vascular Impedance, Wave Intensity, and Hydraulic Work in Patients Undergoing Transcatheter Aortic Valve Replacement. Correction: The Effect of Low-Dose CT Protocols on Shoulder Model-Based Tracking accuracy Using Biplane Videoradiography.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1