系统性红斑狼疮中的 cGAS-STING 通路:生物学意义和治疗机会。

IF 3.3 4区 医学 Q3 IMMUNOLOGY Immunologic Research Pub Date : 2024-08-03 DOI:10.1007/s12026-024-09525-1
Qun Feng, Xiaolin Xu, Shoulin Zhang
{"title":"系统性红斑狼疮中的 cGAS-STING 通路:生物学意义和治疗机会。","authors":"Qun Feng, Xiaolin Xu, Shoulin Zhang","doi":"10.1007/s12026-024-09525-1","DOIUrl":null,"url":null,"abstract":"<p><p>The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway has been identified as a significant modulator of inflammation in various clinical contexts, including infection, cellular stress, and tissue injury. The extensive participation of the cGAS-STING pathway can be attributed to its ability to detect and control the cellular reaction to DNAs originating from both microorganisms and hosts. These DNAs are well recognized as molecules linked with potential risks. At physiological levels, the STING signaling system exhibits protective effects. However, prolonged stimulation of this pathway contributes to autoimmune disorder pathogenesis. The present paper provides an overview of the activation mechanism of the cGAS-STING signaling pathways and their associated significant functions, as well as therapeutic interventions in the context of systemic lupus erythematosus (SLE). The primary objective is to enhance our comprehension of SLE and facilitate more effective diagnosis and treatment strategies for this condition.</p>","PeriodicalId":13389,"journal":{"name":"Immunologic Research","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"cGAS-STING pathway in systemic lupus erythematosus: biological implications and therapeutic opportunities.\",\"authors\":\"Qun Feng, Xiaolin Xu, Shoulin Zhang\",\"doi\":\"10.1007/s12026-024-09525-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway has been identified as a significant modulator of inflammation in various clinical contexts, including infection, cellular stress, and tissue injury. The extensive participation of the cGAS-STING pathway can be attributed to its ability to detect and control the cellular reaction to DNAs originating from both microorganisms and hosts. These DNAs are well recognized as molecules linked with potential risks. At physiological levels, the STING signaling system exhibits protective effects. However, prolonged stimulation of this pathway contributes to autoimmune disorder pathogenesis. The present paper provides an overview of the activation mechanism of the cGAS-STING signaling pathways and their associated significant functions, as well as therapeutic interventions in the context of systemic lupus erythematosus (SLE). The primary objective is to enhance our comprehension of SLE and facilitate more effective diagnosis and treatment strategies for this condition.</p>\",\"PeriodicalId\":13389,\"journal\":{\"name\":\"Immunologic Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Immunologic Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12026-024-09525-1\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunologic Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12026-024-09525-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

环GMP-AMP合成酶(cGAS)-干扰素基因刺激器(STING)信号通路已被确定为各种临床情况下炎症的重要调节器,包括感染、细胞应激和组织损伤。cGAS-STING 通路的广泛参与可归因于其检测和控制细胞对来自微生物和宿主的 DNA 的反应的能力。这些 DNA 被公认为与潜在风险有关的分子。在生理水平上,STING 信号系统具有保护作用。然而,长期刺激这一通路会导致自身免疫性疾病的发病。本文概述了 cGAS-STING 信号通路的激活机制及其相关的重要功能,以及系统性红斑狼疮(SLE)的治疗干预措施。本文的主要目的是加深我们对系统性红斑狼疮的理解,并促进对该病采取更有效的诊断和治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
cGAS-STING pathway in systemic lupus erythematosus: biological implications and therapeutic opportunities.

The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway has been identified as a significant modulator of inflammation in various clinical contexts, including infection, cellular stress, and tissue injury. The extensive participation of the cGAS-STING pathway can be attributed to its ability to detect and control the cellular reaction to DNAs originating from both microorganisms and hosts. These DNAs are well recognized as molecules linked with potential risks. At physiological levels, the STING signaling system exhibits protective effects. However, prolonged stimulation of this pathway contributes to autoimmune disorder pathogenesis. The present paper provides an overview of the activation mechanism of the cGAS-STING signaling pathways and their associated significant functions, as well as therapeutic interventions in the context of systemic lupus erythematosus (SLE). The primary objective is to enhance our comprehension of SLE and facilitate more effective diagnosis and treatment strategies for this condition.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Immunologic Research
Immunologic Research 医学-免疫学
CiteScore
6.90
自引率
0.00%
发文量
83
审稿时长
6-12 weeks
期刊介绍: IMMUNOLOGIC RESEARCH represents a unique medium for the presentation, interpretation, and clarification of complex scientific data. Information is presented in the form of interpretive synthesis reviews, original research articles, symposia, editorials, and theoretical essays. The scope of coverage extends to cellular immunology, immunogenetics, molecular and structural immunology, immunoregulation and autoimmunity, immunopathology, tumor immunology, host defense and microbial immunity, including viral immunology, immunohematology, mucosal immunity, complement, transplantation immunology, clinical immunology, neuroimmunology, immunoendocrinology, immunotoxicology, translational immunology, and history of immunology.
期刊最新文献
Pomalidomide in patients with multiple myeloma: potential impact on the reconstitution of a functional T-cell immunity. A rare cause of immune dysregulation, prolidase deficiency: a case report and review of the literature Patent blue V dye anaphylaxis: should basophil activation test play a role in the diagnosis? DMRT3-mediated lncRNA OIP5-AS1 promotes the pyroptosis of bronchial epithelial cells by binding with EIF4A3 to enhance YAP mRNA stability ASIA syndrome after BNT162b2 vaccination: Is it a distinct rheumatoid arthritis phenotype?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1