Nuzhat Bano, K M Kainat, Mohammad Imran Ansari, Anjali Pal, Sana Sarkar, Pradeep Kumar Sharma
{"title":"利用基于 LC-MS/MS 的蛋白质组学鉴定多柔比星耐药肺腺癌细胞的化疗耐药靶点","authors":"Nuzhat Bano, K M Kainat, Mohammad Imran Ansari, Anjali Pal, Sana Sarkar, Pradeep Kumar Sharma","doi":"10.1080/1120009X.2024.2385267","DOIUrl":null,"url":null,"abstract":"<p><p>Acquired chemoresistance remains a significant challenge in the clinics as most of the treated cancers eventually emerge as hard-to-treat phenotypes. Therefore, identifying chemoresistance targets is highly warranted to manage the disease better. In this study, we employed a label-free LC-MS/MS-based quantitative proteomics analysis to identify potential targets and signaling pathways underlying acquired chemoresistance in a sub-cell line (A549DR) derived from the parental lung adenocarcinoma cells (A549) treated with gradually increasing doses of doxorubicin (DOX). Our proteomics analysis identified 146 upregulated and 129 downregulated targets in A549DR cells. The KEGG pathway and Gene ontology (GO) analysis of differentially expressed upregulated and downregulated proteins showed that most abundant upregulated pathways were related to metabolic pathways, cellular senescence, cell cycle, and p53 signaling. Meanwhile, the downregulated pathways were related to spliceosome, nucleotide metabolism, DNA replication, nucleotide excision repair, and nuclear-cytoplasmic transport. Further, STRING analysis of upregulated biological processes showed a protein-protein interaction (PPI) between CDK1, AKT2, SRC, STAT1, HDAC1, FDXR, FDX1, NPC1, ALDH2, GPx1, CDK4, and B2M, proteins. The identified proteins in this study might be the potential therapeutic targets for mitigating DOX resistance.</p>","PeriodicalId":15338,"journal":{"name":"Journal of Chemotherapy","volume":" ","pages":"1-15"},"PeriodicalIF":1.9000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of chemoresistance targets in doxorubicin-resistant lung adenocarcinoma cells using LC-MS/MS-based proteomics.\",\"authors\":\"Nuzhat Bano, K M Kainat, Mohammad Imran Ansari, Anjali Pal, Sana Sarkar, Pradeep Kumar Sharma\",\"doi\":\"10.1080/1120009X.2024.2385267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Acquired chemoresistance remains a significant challenge in the clinics as most of the treated cancers eventually emerge as hard-to-treat phenotypes. Therefore, identifying chemoresistance targets is highly warranted to manage the disease better. In this study, we employed a label-free LC-MS/MS-based quantitative proteomics analysis to identify potential targets and signaling pathways underlying acquired chemoresistance in a sub-cell line (A549DR) derived from the parental lung adenocarcinoma cells (A549) treated with gradually increasing doses of doxorubicin (DOX). Our proteomics analysis identified 146 upregulated and 129 downregulated targets in A549DR cells. The KEGG pathway and Gene ontology (GO) analysis of differentially expressed upregulated and downregulated proteins showed that most abundant upregulated pathways were related to metabolic pathways, cellular senescence, cell cycle, and p53 signaling. Meanwhile, the downregulated pathways were related to spliceosome, nucleotide metabolism, DNA replication, nucleotide excision repair, and nuclear-cytoplasmic transport. Further, STRING analysis of upregulated biological processes showed a protein-protein interaction (PPI) between CDK1, AKT2, SRC, STAT1, HDAC1, FDXR, FDX1, NPC1, ALDH2, GPx1, CDK4, and B2M, proteins. The identified proteins in this study might be the potential therapeutic targets for mitigating DOX resistance.</p>\",\"PeriodicalId\":15338,\"journal\":{\"name\":\"Journal of Chemotherapy\",\"volume\":\" \",\"pages\":\"1-15\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemotherapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/1120009X.2024.2385267\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemotherapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/1120009X.2024.2385267","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
Identification of chemoresistance targets in doxorubicin-resistant lung adenocarcinoma cells using LC-MS/MS-based proteomics.
Acquired chemoresistance remains a significant challenge in the clinics as most of the treated cancers eventually emerge as hard-to-treat phenotypes. Therefore, identifying chemoresistance targets is highly warranted to manage the disease better. In this study, we employed a label-free LC-MS/MS-based quantitative proteomics analysis to identify potential targets and signaling pathways underlying acquired chemoresistance in a sub-cell line (A549DR) derived from the parental lung adenocarcinoma cells (A549) treated with gradually increasing doses of doxorubicin (DOX). Our proteomics analysis identified 146 upregulated and 129 downregulated targets in A549DR cells. The KEGG pathway and Gene ontology (GO) analysis of differentially expressed upregulated and downregulated proteins showed that most abundant upregulated pathways were related to metabolic pathways, cellular senescence, cell cycle, and p53 signaling. Meanwhile, the downregulated pathways were related to spliceosome, nucleotide metabolism, DNA replication, nucleotide excision repair, and nuclear-cytoplasmic transport. Further, STRING analysis of upregulated biological processes showed a protein-protein interaction (PPI) between CDK1, AKT2, SRC, STAT1, HDAC1, FDXR, FDX1, NPC1, ALDH2, GPx1, CDK4, and B2M, proteins. The identified proteins in this study might be the potential therapeutic targets for mitigating DOX resistance.
期刊介绍:
The Journal of Chemotherapy is an international multidisciplinary journal committed to the rapid publication of high quality, peer-reviewed, original research on all aspects of antimicrobial and antitumor chemotherapy.
The Journal publishes original experimental and clinical research articles, state-of-the-art reviews, brief communications and letters on all aspects of chemotherapy, providing coverage of the pathogenesis, diagnosis, treatment, and control of infection, as well as the use of anticancer and immunomodulating drugs.
Specific areas of focus include, but are not limited to:
· Antibacterial, antiviral, antifungal, antiparasitic, and antiprotozoal agents;
· Anticancer classical and targeted chemotherapeutic agents, biological agents, hormonal drugs, immunomodulatory drugs, cell therapy and gene therapy;
· Pharmacokinetic and pharmacodynamic properties of antimicrobial and anticancer agents;
· The efficacy, safety and toxicology profiles of antimicrobial and anticancer drugs;
· Drug interactions in single or combined applications;
· Drug resistance to antimicrobial and anticancer drugs;
· Research and development of novel antimicrobial and anticancer drugs, including preclinical, translational and clinical research;
· Biomarkers of sensitivity and/or resistance for antimicrobial and anticancer drugs;
· Pharmacogenetics and pharmacogenomics;
· Precision medicine in infectious disease therapy and in cancer therapy;
· Pharmacoeconomics of antimicrobial and anticancer therapies and the implications to patients, health services, and the pharmaceutical industry.