孟德尔随机试验证明,外周循环的酰基肉碱与颅内动脉瘤之间存在因果关系。

IF 5.6 2区 医学 Q1 CLINICAL NEUROLOGY Neurotherapeutics Pub Date : 2024-09-01 DOI:10.1016/j.neurot.2024.e00428
Ying Wang , Kang Xie , Junyu Wang , Fenghua Chen , Xi Li , Longbo Zhang
{"title":"孟德尔随机试验证明,外周循环的酰基肉碱与颅内动脉瘤之间存在因果关系。","authors":"Ying Wang ,&nbsp;Kang Xie ,&nbsp;Junyu Wang ,&nbsp;Fenghua Chen ,&nbsp;Xi Li ,&nbsp;Longbo Zhang","doi":"10.1016/j.neurot.2024.e00428","DOIUrl":null,"url":null,"abstract":"<div><div>Intracranial aneurysm (IA) is the most prevalent type of cerebral vascular disease causing life-threatening subarachnoid hemorrhages (SAH). A long-term vascular structure remodeling is considered as the main pathophysiological feature of IAs. However, the causal factors triggering the pathophysiological process are not clear. Recently, the abnormalities of peripheral circulating proteins and metabolites have been found in IAs patients and associated with the ruptures. We comprehensively investigated the potential causal relationship between blood metabolites and proteins and IAs using the mendelian randomization (MR) analysis. We applied two-sample MR to explore the potential causal association between peripheral circulating metabolites (191 blood metabolites) and proteins (1398 proteins) and IAs using data from the FinnGen study and the GWAS datasets published by Bakker et al. We identified palmitoylcarnitine, stearoylcarnitine and 2-tetradecenoylcarnitine as causal contributors of IAs and ruptures. Further two-step mediation MR analysis suggested that hypertension as one of the contributors of IAs and ruptures mediated the causal relationship between palmitoylcarnitine, stearoylcarnitine and 2-tetradecenoylcarnitine and IAs. Together, our study demonstrates that blood metabolic palmitoylcarnitine, stearoylcarnitine and 2-tetradecenoylcarnitine are causally linked to the formation and rupture of IAs. Hypertension partially mediates the causal effects.</div></div>","PeriodicalId":19159,"journal":{"name":"Neurotherapeutics","volume":"21 5","pages":"Article e00428"},"PeriodicalIF":5.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mendelian randomization demonstrates a causal link between peripheral circulating acylcarnitines and intracranial aneurysms\",\"authors\":\"Ying Wang ,&nbsp;Kang Xie ,&nbsp;Junyu Wang ,&nbsp;Fenghua Chen ,&nbsp;Xi Li ,&nbsp;Longbo Zhang\",\"doi\":\"10.1016/j.neurot.2024.e00428\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Intracranial aneurysm (IA) is the most prevalent type of cerebral vascular disease causing life-threatening subarachnoid hemorrhages (SAH). A long-term vascular structure remodeling is considered as the main pathophysiological feature of IAs. However, the causal factors triggering the pathophysiological process are not clear. Recently, the abnormalities of peripheral circulating proteins and metabolites have been found in IAs patients and associated with the ruptures. We comprehensively investigated the potential causal relationship between blood metabolites and proteins and IAs using the mendelian randomization (MR) analysis. We applied two-sample MR to explore the potential causal association between peripheral circulating metabolites (191 blood metabolites) and proteins (1398 proteins) and IAs using data from the FinnGen study and the GWAS datasets published by Bakker et al. We identified palmitoylcarnitine, stearoylcarnitine and 2-tetradecenoylcarnitine as causal contributors of IAs and ruptures. Further two-step mediation MR analysis suggested that hypertension as one of the contributors of IAs and ruptures mediated the causal relationship between palmitoylcarnitine, stearoylcarnitine and 2-tetradecenoylcarnitine and IAs. Together, our study demonstrates that blood metabolic palmitoylcarnitine, stearoylcarnitine and 2-tetradecenoylcarnitine are causally linked to the formation and rupture of IAs. Hypertension partially mediates the causal effects.</div></div>\",\"PeriodicalId\":19159,\"journal\":{\"name\":\"Neurotherapeutics\",\"volume\":\"21 5\",\"pages\":\"Article e00428\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurotherapeutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1878747924001144\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurotherapeutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878747924001144","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

颅内动脉瘤(IA)是导致蛛网膜下腔出血(SAH)并危及生命的最常见脑血管疾病。长期的血管结构重塑被认为是颅内动脉瘤的主要病理生理特征。然而,引发这一病理生理过程的致病因素尚不明确。最近,在 IAs 患者中发现了外周循环蛋白和代谢物的异常,并与破裂有关。我们采用孟德尔随机分析法(MR)全面研究了血液代谢物和蛋白质与 IAs 之间的潜在因果关系。我们利用FinnGen研究的数据和Bakker等人发表的GWAS数据集,应用双样本MR探讨了外周循环代谢物(191种血液代谢物)和蛋白质(1398种蛋白质)与IAs之间的潜在因果关系。进一步的两步中介MR分析表明,高血压作为内膜损伤和破裂的诱因之一,中介了棕榈酰肉碱、硬脂酰肉碱和2-十四碳烯酰肉碱与内膜损伤之间的因果关系。总之,我们的研究表明,血液中代谢的棕榈酰肉碱、硬脂酰肉碱和 2-十四碳烯酰肉碱与 IAs 的形成和破裂有因果关系。高血压部分介导了这种因果效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mendelian randomization demonstrates a causal link between peripheral circulating acylcarnitines and intracranial aneurysms
Intracranial aneurysm (IA) is the most prevalent type of cerebral vascular disease causing life-threatening subarachnoid hemorrhages (SAH). A long-term vascular structure remodeling is considered as the main pathophysiological feature of IAs. However, the causal factors triggering the pathophysiological process are not clear. Recently, the abnormalities of peripheral circulating proteins and metabolites have been found in IAs patients and associated with the ruptures. We comprehensively investigated the potential causal relationship between blood metabolites and proteins and IAs using the mendelian randomization (MR) analysis. We applied two-sample MR to explore the potential causal association between peripheral circulating metabolites (191 blood metabolites) and proteins (1398 proteins) and IAs using data from the FinnGen study and the GWAS datasets published by Bakker et al. We identified palmitoylcarnitine, stearoylcarnitine and 2-tetradecenoylcarnitine as causal contributors of IAs and ruptures. Further two-step mediation MR analysis suggested that hypertension as one of the contributors of IAs and ruptures mediated the causal relationship between palmitoylcarnitine, stearoylcarnitine and 2-tetradecenoylcarnitine and IAs. Together, our study demonstrates that blood metabolic palmitoylcarnitine, stearoylcarnitine and 2-tetradecenoylcarnitine are causally linked to the formation and rupture of IAs. Hypertension partially mediates the causal effects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurotherapeutics
Neurotherapeutics 医学-神经科学
CiteScore
11.00
自引率
3.50%
发文量
154
审稿时长
6-12 weeks
期刊介绍: Neurotherapeutics® is the journal of the American Society for Experimental Neurotherapeutics (ASENT). Each issue provides critical reviews of an important topic relating to the treatment of neurological disorders written by international authorities. The Journal also publishes original research articles in translational neuroscience including descriptions of cutting edge therapies that cross disciplinary lines and represent important contributions to neurotherapeutics for medical practitioners and other researchers in the field. Neurotherapeutics ® delivers a multidisciplinary perspective on the frontiers of translational neuroscience, provides perspectives on current research and practice, and covers social and ethical as well as scientific issues.
期刊最新文献
Clavulanic acid prevents paclitaxel-induced neuropathic pain through a systemic and central anti-inflammatory effect in mice. Graft ischemia post cell transplantation to the brain: Glucose deprivation as the primary driver of rapid cell death. Inducers and modulators of protein aggregation in Alzheimer's disease - Critical tools for understanding the foundations of aggregate structures. Delayed atorvastatin delivery promotes recovery after experimental spinal cord injury. Evolving concepts in intracranial pressure monitoring - from traditional monitoring to precision medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1