实施隐私保护记录链接:澳大利亚使用案例的启示。

IF 3.7 2区 医学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS International Journal of Medical Informatics Pub Date : 2024-07-31 DOI:10.1016/j.ijmedinf.2024.105582
Sean Randall , Adrian Brown , Anna Ferrante , James Boyd , Suzanne Robinson
{"title":"实施隐私保护记录链接:澳大利亚使用案例的启示。","authors":"Sean Randall ,&nbsp;Adrian Brown ,&nbsp;Anna Ferrante ,&nbsp;James Boyd ,&nbsp;Suzanne Robinson","doi":"10.1016/j.ijmedinf.2024.105582","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><p>To describe the use of privacy preserving linkage methods operationally in Australia, and to present insights and key learnings from their implementation.</p></div><div><h3>Methods</h3><p>Privacy preserving record linkage (PPRL) utilising Bloom filters provides a unique practical mechanism that allows linkage to occur without the release of personally identifiable information (PII), while still ensuring high accuracy.</p></div><div><h3>Results</h3><p>The methodology has received wide uptake within Australia, with four state linkage units with privacy preserving capability. It has enabled access to general practice and private pathology data amongst other, both much sought after datasets previous inaccessible for linkage.</p></div><div><h3>Conclusion</h3><p>The Australian experience suggests privacy preserving linkage is a practical solution for improving data access for policy, planning and population health research. It is hoped interest in this methodology internationally continues to grow.</p></div>","PeriodicalId":54950,"journal":{"name":"International Journal of Medical Informatics","volume":"191 ","pages":"Article 105582"},"PeriodicalIF":3.7000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1386505624002454/pdfft?md5=026b0b8604d90c986fb1838e1fa8008d&pid=1-s2.0-S1386505624002454-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Implementing privacy preserving record linkage: Insights from Australian use cases\",\"authors\":\"Sean Randall ,&nbsp;Adrian Brown ,&nbsp;Anna Ferrante ,&nbsp;James Boyd ,&nbsp;Suzanne Robinson\",\"doi\":\"10.1016/j.ijmedinf.2024.105582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objective</h3><p>To describe the use of privacy preserving linkage methods operationally in Australia, and to present insights and key learnings from their implementation.</p></div><div><h3>Methods</h3><p>Privacy preserving record linkage (PPRL) utilising Bloom filters provides a unique practical mechanism that allows linkage to occur without the release of personally identifiable information (PII), while still ensuring high accuracy.</p></div><div><h3>Results</h3><p>The methodology has received wide uptake within Australia, with four state linkage units with privacy preserving capability. It has enabled access to general practice and private pathology data amongst other, both much sought after datasets previous inaccessible for linkage.</p></div><div><h3>Conclusion</h3><p>The Australian experience suggests privacy preserving linkage is a practical solution for improving data access for policy, planning and population health research. It is hoped interest in this methodology internationally continues to grow.</p></div>\",\"PeriodicalId\":54950,\"journal\":{\"name\":\"International Journal of Medical Informatics\",\"volume\":\"191 \",\"pages\":\"Article 105582\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1386505624002454/pdfft?md5=026b0b8604d90c986fb1838e1fa8008d&pid=1-s2.0-S1386505624002454-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Medical Informatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1386505624002454\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Medical Informatics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386505624002454","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

目的描述澳大利亚在实际操作中使用隐私保护链接方法的情况,并介绍从实施过程中获得的启示和主要经验:方法:利用布鲁姆过滤器的隐私保护记录关联(PPRL)提供了一种独特的实用机制,允许在不泄露个人身份信息(PII)的情况下进行关联,同时仍能确保高准确性:结果:该方法在澳大利亚得到了广泛应用,四个州的联网单位都具备了保护隐私的能力。结果:该方法在澳大利亚得到了广泛应用,有四个州的链接单位具备了保护隐私的能力,从而能够获取普通诊疗和私人病理数据,以及其他以前无法进行链接的、备受追捧的数据集:澳大利亚的经验表明,隐私保护链接是一种切实可行的解决方案,可改善政策、规划和人口健康研究方面的数据访问。希望国际社会对这一方法的兴趣继续增长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Implementing privacy preserving record linkage: Insights from Australian use cases

Objective

To describe the use of privacy preserving linkage methods operationally in Australia, and to present insights and key learnings from their implementation.

Methods

Privacy preserving record linkage (PPRL) utilising Bloom filters provides a unique practical mechanism that allows linkage to occur without the release of personally identifiable information (PII), while still ensuring high accuracy.

Results

The methodology has received wide uptake within Australia, with four state linkage units with privacy preserving capability. It has enabled access to general practice and private pathology data amongst other, both much sought after datasets previous inaccessible for linkage.

Conclusion

The Australian experience suggests privacy preserving linkage is a practical solution for improving data access for policy, planning and population health research. It is hoped interest in this methodology internationally continues to grow.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Medical Informatics
International Journal of Medical Informatics 医学-计算机:信息系统
CiteScore
8.90
自引率
4.10%
发文量
217
审稿时长
42 days
期刊介绍: International Journal of Medical Informatics provides an international medium for dissemination of original results and interpretative reviews concerning the field of medical informatics. The Journal emphasizes the evaluation of systems in healthcare settings. The scope of journal covers: Information systems, including national or international registration systems, hospital information systems, departmental and/or physician''s office systems, document handling systems, electronic medical record systems, standardization, systems integration etc.; Computer-aided medical decision support systems using heuristic, algorithmic and/or statistical methods as exemplified in decision theory, protocol development, artificial intelligence, etc. Educational computer based programs pertaining to medical informatics or medicine in general; Organizational, economic, social, clinical impact, ethical and cost-benefit aspects of IT applications in health care.
期刊最新文献
Editorial Board Analysis of missing data in electronic health records of people with diabetes in primary care in Spain: A population-based cohort study What information do patients pay more attention to in online physician selection? Information needs model for online medical choice decision-making based on trust theory and fuzzy decision Systematic construction of composite radiation therapy dataset using automated data pipeline for prognosis prediction Perceptions of healthcare professionals and patients with cardiovascular diseases on mHealth lifestyle apps: A qualitative study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1