Zachary S Bellini, Grace O Recht, Taylor R Zuidema, Kyle A Kercher, Sage H Sweeney, Jesse A Steinfeldt, Keisuke Kawata
{"title":"青少年足球运动员的听觉干扰和眼球运动反应与头部次撞击的关系","authors":"Zachary S Bellini, Grace O Recht, Taylor R Zuidema, Kyle A Kercher, Sage H Sweeney, Jesse A Steinfeldt, Keisuke Kawata","doi":"10.1089/neur.2023.0125","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of this study was to examine whether neuro-ophthalmological function, as assessed by the King-Devick test (KDT), alters during a high school football season and to explore the role of auditory interference on the sensitivity of KDT. During the 2021 and 2022 high school football seasons, football players' neuro-ophthalmological function was assessed at five time points (preseason, three in-season, postseason), whereas control athletes were assessed at preseason and postseason. Two-hundred ten football players and 80 control athletes participated in the study. The year 1 cohort (<i>n</i> = 94 football, <i>n</i> = 10 control) was tested with a conventional KDT, whereas the year 2 cohort (<i>n</i> = 116 football, <i>n</i> = 70 control) was tested with KDT while listening to loud traffic sounds to induce auditory interference. There were improvements in KDT during a season among football players, regardless of conventional KDT (preseason 53.4 ± 9.3 vs. postseason 46.4 ± 8.5 sec; β = -1.7, SE = 0.12, <i>p</i> < 0.01) or KDT with auditory interference (preseason 52.3 ± 11.5 vs. postseason 45.1 ± 9.5 sec; β = -1.7, SE = 0.11, <i>p</i> < 0.001). The degree of improvement was similar between the tests, with no significant group-by-time interaction (β = -0.08, SE = 0.17, <i>p</i> = 0.65). The control athletes also improved KDT performance at a similar degree as the football cohorts in both KDT conditions. Our data suggest that KDT performance improves during a season, regardless of auditory interference or head impact exposure. KDT performance was not impacted by a noisy environment, supporting its sideline utility for screening more severe forms of injury.</p>","PeriodicalId":74300,"journal":{"name":"Neurotrauma reports","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11295109/pdf/","citationCount":"0","resultStr":"{\"title\":\"Association of Auditory Interference and Ocular-Motor Response with Subconcussive Head Impacts in Adolescent Football Players.\",\"authors\":\"Zachary S Bellini, Grace O Recht, Taylor R Zuidema, Kyle A Kercher, Sage H Sweeney, Jesse A Steinfeldt, Keisuke Kawata\",\"doi\":\"10.1089/neur.2023.0125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The aim of this study was to examine whether neuro-ophthalmological function, as assessed by the King-Devick test (KDT), alters during a high school football season and to explore the role of auditory interference on the sensitivity of KDT. During the 2021 and 2022 high school football seasons, football players' neuro-ophthalmological function was assessed at five time points (preseason, three in-season, postseason), whereas control athletes were assessed at preseason and postseason. Two-hundred ten football players and 80 control athletes participated in the study. The year 1 cohort (<i>n</i> = 94 football, <i>n</i> = 10 control) was tested with a conventional KDT, whereas the year 2 cohort (<i>n</i> = 116 football, <i>n</i> = 70 control) was tested with KDT while listening to loud traffic sounds to induce auditory interference. There were improvements in KDT during a season among football players, regardless of conventional KDT (preseason 53.4 ± 9.3 vs. postseason 46.4 ± 8.5 sec; β = -1.7, SE = 0.12, <i>p</i> < 0.01) or KDT with auditory interference (preseason 52.3 ± 11.5 vs. postseason 45.1 ± 9.5 sec; β = -1.7, SE = 0.11, <i>p</i> < 0.001). The degree of improvement was similar between the tests, with no significant group-by-time interaction (β = -0.08, SE = 0.17, <i>p</i> = 0.65). The control athletes also improved KDT performance at a similar degree as the football cohorts in both KDT conditions. Our data suggest that KDT performance improves during a season, regardless of auditory interference or head impact exposure. KDT performance was not impacted by a noisy environment, supporting its sideline utility for screening more severe forms of injury.</p>\",\"PeriodicalId\":74300,\"journal\":{\"name\":\"Neurotrauma reports\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11295109/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurotrauma reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1089/neur.2023.0125\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurotrauma reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/neur.2023.0125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Association of Auditory Interference and Ocular-Motor Response with Subconcussive Head Impacts in Adolescent Football Players.
The aim of this study was to examine whether neuro-ophthalmological function, as assessed by the King-Devick test (KDT), alters during a high school football season and to explore the role of auditory interference on the sensitivity of KDT. During the 2021 and 2022 high school football seasons, football players' neuro-ophthalmological function was assessed at five time points (preseason, three in-season, postseason), whereas control athletes were assessed at preseason and postseason. Two-hundred ten football players and 80 control athletes participated in the study. The year 1 cohort (n = 94 football, n = 10 control) was tested with a conventional KDT, whereas the year 2 cohort (n = 116 football, n = 70 control) was tested with KDT while listening to loud traffic sounds to induce auditory interference. There were improvements in KDT during a season among football players, regardless of conventional KDT (preseason 53.4 ± 9.3 vs. postseason 46.4 ± 8.5 sec; β = -1.7, SE = 0.12, p < 0.01) or KDT with auditory interference (preseason 52.3 ± 11.5 vs. postseason 45.1 ± 9.5 sec; β = -1.7, SE = 0.11, p < 0.001). The degree of improvement was similar between the tests, with no significant group-by-time interaction (β = -0.08, SE = 0.17, p = 0.65). The control athletes also improved KDT performance at a similar degree as the football cohorts in both KDT conditions. Our data suggest that KDT performance improves during a season, regardless of auditory interference or head impact exposure. KDT performance was not impacted by a noisy environment, supporting its sideline utility for screening more severe forms of injury.