V.H. Pereira-Ferrero , T.G. Lewis , L.P. Valem , L.G.P. Ferrero , D.C.G. Pedronette , L.J. Latecki
{"title":"基于流形分析的图像检索无监督亲和性学习:调查","authors":"V.H. Pereira-Ferrero , T.G. Lewis , L.P. Valem , L.G.P. Ferrero , D.C.G. Pedronette , L.J. Latecki","doi":"10.1016/j.cosrev.2024.100657","DOIUrl":null,"url":null,"abstract":"<div><p>Despite the advances in machine learning techniques, similarity assessment among multimedia data remains a challenging task of broad interest in computer science. Substantial progress has been achieved in acquiring meaningful data representations, but how to compare them, plays a pivotal role in machine learning and retrieval tasks. Traditional pairwise measures are widely used, yet unsupervised affinity learning approaches have emerged as a valuable solution for enhancing retrieval effectiveness. These methods leverage the dataset manifold to encode contextual information, refining initial similarity/dissimilarity measures through post-processing. In other words, measuring the similarity between data objects within the context of other data objects is often more effective. This survey provides a comprehensive discussion about unsupervised post-processing methods, addressing the historical development and proposing an organization of the area, with a specific emphasis on image retrieval. A systematic review was conducted contributing to a formal understanding of the field. Additionally, an experimental study is presented to evaluate the potential of such methods in improving retrieval results, focusing on recent features extracted from Convolutional Neural Networks (CNNs) and Transformer models, in 8 distinct datasets, and over 329.877 images analyzed. State-of-the-art comparison for Flowers, Corel5k, and ALOI datasets, the Rank Flow Embedding method outperformed all state-of-art approaches, achieving 99.65%, 96.79%, and 97.73%, respectively.</p></div>","PeriodicalId":48633,"journal":{"name":"Computer Science Review","volume":"53 ","pages":"Article 100657"},"PeriodicalIF":13.3000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unsupervised affinity learning based on manifold analysis for image retrieval: A survey\",\"authors\":\"V.H. Pereira-Ferrero , T.G. Lewis , L.P. Valem , L.G.P. Ferrero , D.C.G. Pedronette , L.J. Latecki\",\"doi\":\"10.1016/j.cosrev.2024.100657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Despite the advances in machine learning techniques, similarity assessment among multimedia data remains a challenging task of broad interest in computer science. Substantial progress has been achieved in acquiring meaningful data representations, but how to compare them, plays a pivotal role in machine learning and retrieval tasks. Traditional pairwise measures are widely used, yet unsupervised affinity learning approaches have emerged as a valuable solution for enhancing retrieval effectiveness. These methods leverage the dataset manifold to encode contextual information, refining initial similarity/dissimilarity measures through post-processing. In other words, measuring the similarity between data objects within the context of other data objects is often more effective. This survey provides a comprehensive discussion about unsupervised post-processing methods, addressing the historical development and proposing an organization of the area, with a specific emphasis on image retrieval. A systematic review was conducted contributing to a formal understanding of the field. Additionally, an experimental study is presented to evaluate the potential of such methods in improving retrieval results, focusing on recent features extracted from Convolutional Neural Networks (CNNs) and Transformer models, in 8 distinct datasets, and over 329.877 images analyzed. State-of-the-art comparison for Flowers, Corel5k, and ALOI datasets, the Rank Flow Embedding method outperformed all state-of-art approaches, achieving 99.65%, 96.79%, and 97.73%, respectively.</p></div>\",\"PeriodicalId\":48633,\"journal\":{\"name\":\"Computer Science Review\",\"volume\":\"53 \",\"pages\":\"Article 100657\"},\"PeriodicalIF\":13.3000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Science Review\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1574013724000418\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Science Review","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574013724000418","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Unsupervised affinity learning based on manifold analysis for image retrieval: A survey
Despite the advances in machine learning techniques, similarity assessment among multimedia data remains a challenging task of broad interest in computer science. Substantial progress has been achieved in acquiring meaningful data representations, but how to compare them, plays a pivotal role in machine learning and retrieval tasks. Traditional pairwise measures are widely used, yet unsupervised affinity learning approaches have emerged as a valuable solution for enhancing retrieval effectiveness. These methods leverage the dataset manifold to encode contextual information, refining initial similarity/dissimilarity measures through post-processing. In other words, measuring the similarity between data objects within the context of other data objects is often more effective. This survey provides a comprehensive discussion about unsupervised post-processing methods, addressing the historical development and proposing an organization of the area, with a specific emphasis on image retrieval. A systematic review was conducted contributing to a formal understanding of the field. Additionally, an experimental study is presented to evaluate the potential of such methods in improving retrieval results, focusing on recent features extracted from Convolutional Neural Networks (CNNs) and Transformer models, in 8 distinct datasets, and over 329.877 images analyzed. State-of-the-art comparison for Flowers, Corel5k, and ALOI datasets, the Rank Flow Embedding method outperformed all state-of-art approaches, achieving 99.65%, 96.79%, and 97.73%, respectively.
期刊介绍:
Computer Science Review, a publication dedicated to research surveys and expository overviews of open problems in computer science, targets a broad audience within the field seeking comprehensive insights into the latest developments. The journal welcomes articles from various fields as long as their content impacts the advancement of computer science. In particular, articles that review the application of well-known Computer Science methods to other areas are in scope only if these articles advance the fundamental understanding of those methods.