憋气潜水员对干式动态呼吸暂停的心血管和血液反应。

IF 2.2 3区 医学 Q3 PHYSIOLOGY American journal of physiology. Regulatory, integrative and comparative physiology Pub Date : 2024-10-01 Epub Date: 2024-08-05 DOI:10.1152/ajpregu.00081.2024
Courtney V Brown, Alexander Patrician, Joshua C Tremblay, L Madden Brewster, Otto Barak, Ivan Drvis, Goran Dujic, Zeljko Dujic, Philip N Ainslie
{"title":"憋气潜水员对干式动态呼吸暂停的心血管和血液反应。","authors":"Courtney V Brown, Alexander Patrician, Joshua C Tremblay, L Madden Brewster, Otto Barak, Ivan Drvis, Goran Dujic, Zeljko Dujic, Philip N Ainslie","doi":"10.1152/ajpregu.00081.2024","DOIUrl":null,"url":null,"abstract":"<p><p>The mammalian dive reflex, characterized by bradycardia and peripheral vasoconstriction, occurs in all mammals, including humans, in response to apnea. However, the dive reflex to a single, maximal, dry, dynamic apnea (DYN) and how it compares to a time-matched exercise control trial (EX) or dry static apnea (SA) has not been studied. We examined the hypotheses that, compared with EX and SA, the magnitude of the <i>1</i>) cardiovascular response and <i>2</i>) hematological response to DYN would be greater. Cardiovascular parameters [heart rate (HR), systolic (SBP), diastolic (DBP), and mean arterial (MAP) blood pressure] were continuously collected in 23 (<i>F</i> = 6 females) moderate and elite freedivers, first during a maximal DYN, then during a time-matched SA and EX on a swimming ergometer in randomized order. Venous blood draws were made before and following each trial. The change in calculated oxygen saturation (DYN: -17 ± 13%, EX: -2 ± 1%, ΔSA: -2 ± 1%; <i>P</i> < 0.05, all comparisons) was greater during DYN compared with EX and SA. During DYN, ΔSBP (DYN: 104 ± 31 mmHg; EX: 38 ± 23 mmHg; and SA: 20 ± 11 mmHg), ΔDBP (DYN: 45 ± 12 mmHg; EX: 14 ± 10 mmHg; and SA: 15 ± 8 mmHg), and ΔMAP (DYN: 65 ± 17 mmHg; EX: 22 ± 13 mmHg; and SA: 16 ± 9 mmHg) were increased compared with EX and SA, while ΔHR was greater during EX (DYN: -24 ± 23 beats/min; EX: 33 ± 13 beats/min; and SA: -1 ± 10 beats/min) than either DYN or SA (<i>P</i> < 0.0001, all comparisons). Females had a greater pressor response to EX (ΔSBP: 59 ± 30 mmHg; ΔDBP: 24 ± 14 mmHg; and ΔMAP: 35 ± 8 mmHg) than males (ΔSBP: 31 ± 15 mmHg; ΔDBP: 11 ± 6 mmHg; and ΔMAP: 18 ± 8 mmHg; <i>P</i> < 0.01, all comparisons). Together, these data indicate that DYN elicits a distinct, exaggerated cardiovascular response compared with EX or SA alone.<b>NEW & NOTEWORTHY</b> This study performed a dry dynamic apnea with sport-specific equipment to closely mimic the physiological demands of competition diving. We found the cardiovascular and hematological responses to dynamic apnea were more robust compared with time-matched exercise and dry static apnea control trials.</p>","PeriodicalId":7630,"journal":{"name":"American journal of physiology. Regulatory, integrative and comparative physiology","volume":" ","pages":"R442-R456"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cardiovascular and hematological responses to a dry dynamic apnea in breath hold divers.\",\"authors\":\"Courtney V Brown, Alexander Patrician, Joshua C Tremblay, L Madden Brewster, Otto Barak, Ivan Drvis, Goran Dujic, Zeljko Dujic, Philip N Ainslie\",\"doi\":\"10.1152/ajpregu.00081.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The mammalian dive reflex, characterized by bradycardia and peripheral vasoconstriction, occurs in all mammals, including humans, in response to apnea. However, the dive reflex to a single, maximal, dry, dynamic apnea (DYN) and how it compares to a time-matched exercise control trial (EX) or dry static apnea (SA) has not been studied. We examined the hypotheses that, compared with EX and SA, the magnitude of the <i>1</i>) cardiovascular response and <i>2</i>) hematological response to DYN would be greater. Cardiovascular parameters [heart rate (HR), systolic (SBP), diastolic (DBP), and mean arterial (MAP) blood pressure] were continuously collected in 23 (<i>F</i> = 6 females) moderate and elite freedivers, first during a maximal DYN, then during a time-matched SA and EX on a swimming ergometer in randomized order. Venous blood draws were made before and following each trial. The change in calculated oxygen saturation (DYN: -17 ± 13%, EX: -2 ± 1%, ΔSA: -2 ± 1%; <i>P</i> < 0.05, all comparisons) was greater during DYN compared with EX and SA. During DYN, ΔSBP (DYN: 104 ± 31 mmHg; EX: 38 ± 23 mmHg; and SA: 20 ± 11 mmHg), ΔDBP (DYN: 45 ± 12 mmHg; EX: 14 ± 10 mmHg; and SA: 15 ± 8 mmHg), and ΔMAP (DYN: 65 ± 17 mmHg; EX: 22 ± 13 mmHg; and SA: 16 ± 9 mmHg) were increased compared with EX and SA, while ΔHR was greater during EX (DYN: -24 ± 23 beats/min; EX: 33 ± 13 beats/min; and SA: -1 ± 10 beats/min) than either DYN or SA (<i>P</i> < 0.0001, all comparisons). Females had a greater pressor response to EX (ΔSBP: 59 ± 30 mmHg; ΔDBP: 24 ± 14 mmHg; and ΔMAP: 35 ± 8 mmHg) than males (ΔSBP: 31 ± 15 mmHg; ΔDBP: 11 ± 6 mmHg; and ΔMAP: 18 ± 8 mmHg; <i>P</i> < 0.01, all comparisons). Together, these data indicate that DYN elicits a distinct, exaggerated cardiovascular response compared with EX or SA alone.<b>NEW & NOTEWORTHY</b> This study performed a dry dynamic apnea with sport-specific equipment to closely mimic the physiological demands of competition diving. We found the cardiovascular and hematological responses to dynamic apnea were more robust compared with time-matched exercise and dry static apnea control trials.</p>\",\"PeriodicalId\":7630,\"journal\":{\"name\":\"American journal of physiology. Regulatory, integrative and comparative physiology\",\"volume\":\" \",\"pages\":\"R442-R456\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Regulatory, integrative and comparative physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/ajpregu.00081.2024\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Regulatory, integrative and comparative physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpregu.00081.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

包括人类在内的所有哺乳动物在呼吸暂停时都会出现以心动过缓和外周血管收缩为特征的哺乳动物潜水反射。然而,对单次最大干性动态呼吸暂停(Dynamic apnea,DYN)的潜水反射,以及它与时间匹配的运动对照试验(EX)或干性静态呼吸暂停(SA)的比较,还没有进行过研究。我们研究了以下假设:与 EX 和 SA 相比,DYN 的(a) 心血管反应和(b) 血液学反应的幅度会更大。连续收集了 23 名(F=6)中等水平和精英自由泳运动员的心血管参数(心率[HR]、收缩压[SBP]、舒张压[DBP]和平均动脉血压[MAP]),首先是在最大 DYN 期间,然后是在游泳测力计上按随机顺序进行与时间匹配的 SA 和 EX 期间。每次试验之前和之后都进行了静脉抽血。计算得出的血氧饱和度变化(DYN:-17±13%,EX:-2±1%,ΔSA:-2±1%;P
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cardiovascular and hematological responses to a dry dynamic apnea in breath hold divers.

The mammalian dive reflex, characterized by bradycardia and peripheral vasoconstriction, occurs in all mammals, including humans, in response to apnea. However, the dive reflex to a single, maximal, dry, dynamic apnea (DYN) and how it compares to a time-matched exercise control trial (EX) or dry static apnea (SA) has not been studied. We examined the hypotheses that, compared with EX and SA, the magnitude of the 1) cardiovascular response and 2) hematological response to DYN would be greater. Cardiovascular parameters [heart rate (HR), systolic (SBP), diastolic (DBP), and mean arterial (MAP) blood pressure] were continuously collected in 23 (F = 6 females) moderate and elite freedivers, first during a maximal DYN, then during a time-matched SA and EX on a swimming ergometer in randomized order. Venous blood draws were made before and following each trial. The change in calculated oxygen saturation (DYN: -17 ± 13%, EX: -2 ± 1%, ΔSA: -2 ± 1%; P < 0.05, all comparisons) was greater during DYN compared with EX and SA. During DYN, ΔSBP (DYN: 104 ± 31 mmHg; EX: 38 ± 23 mmHg; and SA: 20 ± 11 mmHg), ΔDBP (DYN: 45 ± 12 mmHg; EX: 14 ± 10 mmHg; and SA: 15 ± 8 mmHg), and ΔMAP (DYN: 65 ± 17 mmHg; EX: 22 ± 13 mmHg; and SA: 16 ± 9 mmHg) were increased compared with EX and SA, while ΔHR was greater during EX (DYN: -24 ± 23 beats/min; EX: 33 ± 13 beats/min; and SA: -1 ± 10 beats/min) than either DYN or SA (P < 0.0001, all comparisons). Females had a greater pressor response to EX (ΔSBP: 59 ± 30 mmHg; ΔDBP: 24 ± 14 mmHg; and ΔMAP: 35 ± 8 mmHg) than males (ΔSBP: 31 ± 15 mmHg; ΔDBP: 11 ± 6 mmHg; and ΔMAP: 18 ± 8 mmHg; P < 0.01, all comparisons). Together, these data indicate that DYN elicits a distinct, exaggerated cardiovascular response compared with EX or SA alone.NEW & NOTEWORTHY This study performed a dry dynamic apnea with sport-specific equipment to closely mimic the physiological demands of competition diving. We found the cardiovascular and hematological responses to dynamic apnea were more robust compared with time-matched exercise and dry static apnea control trials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.30
自引率
3.60%
发文量
145
审稿时长
2 months
期刊介绍: The American Journal of Physiology-Regulatory, Integrative and Comparative Physiology publishes original investigations that illuminate normal or abnormal regulation and integration of physiological mechanisms at all levels of biological organization, ranging from molecules to humans, including clinical investigations. Major areas of emphasis include regulation in genetically modified animals; model organisms; development and tissue plasticity; neurohumoral control of circulation and hypertension; local control of circulation; cardiac and renal integration; thirst and volume, electrolyte homeostasis; glucose homeostasis and energy balance; appetite and obesity; inflammation and cytokines; integrative physiology of pregnancy-parturition-lactation; and thermoregulation and adaptations to exercise and environmental stress.
期刊最新文献
Cerebral hemodynamic and systemic physiological changes in trained freedivers completing sled-assisted dives to two different depths. Modulation of cutaneous vasodilation by reactive oxygen species during local and whole body heating in young and older adults. Relationship between regional sympathetic vascular transduction and sympathetic transduction of blood pressure in young adults at rest. Cerebral vasomotor reactivity to carbon dioxide using the rebreathe technique: assessment of within-day and between-day repeatability. Steering toward new horizons: a vision for the future of the American Journal of Physiology-Regulatory, Integrative and Comparative Physiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1