Marta Kiezun, Kamil Dobrzyn, Tadeusz Kaminski, Nina Smolinska
{"title":"螯合素影响早期妊娠和发情周期猪子宫内膜细胞因子的产生及其受体的表达:一项体外研究。","authors":"Marta Kiezun, Kamil Dobrzyn, Tadeusz Kaminski, Nina Smolinska","doi":"10.1093/biolre/ioae117","DOIUrl":null,"url":null,"abstract":"<p><p>Interactions between female metabolic status, immune response, and reproductive system functioning are complex and not fully understood. We hypothesized that chemerin, considered a hormonal link between the above-mentioned processes, influences endometrial functions, particularly cytokine secretion and signaling. Using porcine endometrial explants collected during early pregnancy and the estrous cycle, we investigated chemerin effects on the secretion of interleukins (IL-1β, IL-6, and IL-8), leukemia inhibitory factor, tumor necrosis factor α, transforming growth factor α, and protein abundances of their respective receptors. Our results demonstrate chemerin modulation of cytokine secretion and receptor expression, with effects dependent on the stage of pregnancy and dose of chemerin. Furthermore, chemerin influences the phosphorylation of stress-activated protein kinase/Jun-amino-terminal kinase and nuclear factor kappa-light-chain-enhancer of activated B cells in the endometrium. Chemerin multifaceted actions, such as involvement in immune response, cell proliferation, and tissue remodeling, seem to be mediated by cytokines, at least in the endometrium. These findings underscore the potential crosstalk between chemerin and hormonal signaling pathways, providing insights into the complex mechanisms underlying early pregnancy establishment and maintenance.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemerin affects the cytokine production and the expression of their receptors in the porcine endometrium during early pregnancy and the estrous cycle: an in vitro study†.\",\"authors\":\"Marta Kiezun, Kamil Dobrzyn, Tadeusz Kaminski, Nina Smolinska\",\"doi\":\"10.1093/biolre/ioae117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Interactions between female metabolic status, immune response, and reproductive system functioning are complex and not fully understood. We hypothesized that chemerin, considered a hormonal link between the above-mentioned processes, influences endometrial functions, particularly cytokine secretion and signaling. Using porcine endometrial explants collected during early pregnancy and the estrous cycle, we investigated chemerin effects on the secretion of interleukins (IL-1β, IL-6, and IL-8), leukemia inhibitory factor, tumor necrosis factor α, transforming growth factor α, and protein abundances of their respective receptors. Our results demonstrate chemerin modulation of cytokine secretion and receptor expression, with effects dependent on the stage of pregnancy and dose of chemerin. Furthermore, chemerin influences the phosphorylation of stress-activated protein kinase/Jun-amino-terminal kinase and nuclear factor kappa-light-chain-enhancer of activated B cells in the endometrium. Chemerin multifaceted actions, such as involvement in immune response, cell proliferation, and tissue remodeling, seem to be mediated by cytokines, at least in the endometrium. These findings underscore the potential crosstalk between chemerin and hormonal signaling pathways, providing insights into the complex mechanisms underlying early pregnancy establishment and maintenance.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1093/biolre/ioae117\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1093/biolre/ioae117","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Chemerin affects the cytokine production and the expression of their receptors in the porcine endometrium during early pregnancy and the estrous cycle: an in vitro study†.
Interactions between female metabolic status, immune response, and reproductive system functioning are complex and not fully understood. We hypothesized that chemerin, considered a hormonal link between the above-mentioned processes, influences endometrial functions, particularly cytokine secretion and signaling. Using porcine endometrial explants collected during early pregnancy and the estrous cycle, we investigated chemerin effects on the secretion of interleukins (IL-1β, IL-6, and IL-8), leukemia inhibitory factor, tumor necrosis factor α, transforming growth factor α, and protein abundances of their respective receptors. Our results demonstrate chemerin modulation of cytokine secretion and receptor expression, with effects dependent on the stage of pregnancy and dose of chemerin. Furthermore, chemerin influences the phosphorylation of stress-activated protein kinase/Jun-amino-terminal kinase and nuclear factor kappa-light-chain-enhancer of activated B cells in the endometrium. Chemerin multifaceted actions, such as involvement in immune response, cell proliferation, and tissue remodeling, seem to be mediated by cytokines, at least in the endometrium. These findings underscore the potential crosstalk between chemerin and hormonal signaling pathways, providing insights into the complex mechanisms underlying early pregnancy establishment and maintenance.