常规实验室检测对预测 SARS-CoV-2 患者死亡率和病情恶化为严重或危重 COVID-19 的准确性。

IF 8.8 2区 医学 Q1 MEDICINE, GENERAL & INTERNAL Cochrane Database of Systematic Reviews Pub Date : 2024-08-06 DOI:10.1002/14651858.CD015050.pub2
Liselore De Rop, David Ag Bos, Inge Stegeman, Gea Holtman, Eleanor A Ochodo, René Spijker, Jenifer A Otieno, Fade Alkhlaileh, Jonathan J Deeks, Jacqueline Dinnes, Ann Van den Bruel, Matthew Df McInnes, Mariska Mg Leeflang, Jan Y Verbakel
{"title":"常规实验室检测对预测 SARS-CoV-2 患者死亡率和病情恶化为严重或危重 COVID-19 的准确性。","authors":"Liselore De Rop, David Ag Bos, Inge Stegeman, Gea Holtman, Eleanor A Ochodo, René Spijker, Jenifer A Otieno, Fade Alkhlaileh, Jonathan J Deeks, Jacqueline Dinnes, Ann Van den Bruel, Matthew Df McInnes, Mariska Mg Leeflang, Jan Y Verbakel","doi":"10.1002/14651858.CD015050.pub2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Identifying patients with COVID-19 disease who will deteriorate can be useful to assess whether they should receive intensive care, or whether they can be treated in a less intensive way or through outpatient care. In clinical care, routine laboratory markers, such as C-reactive protein, are used to assess a person's health status.</p><p><strong>Objectives: </strong>To assess the accuracy of routine blood-based laboratory tests to predict mortality and deterioration to severe or critical (from mild or moderate) COVID-19 in people with SARS-CoV-2.</p><p><strong>Search methods: </strong>On 25 August 2022, we searched the Cochrane COVID-19 Study Register, encompassing searches of various databases such as MEDLINE via PubMed, CENTRAL, Embase, medRxiv, and ClinicalTrials.gov. We did not apply any language restrictions.</p><p><strong>Selection criteria: </strong>We included studies of all designs that produced estimates of prognostic accuracy in participants who presented to outpatient services, or were admitted to general hospital wards with confirmed SARS-CoV-2 infection, and studies that were based on serum banks of samples from people. All routine blood-based laboratory tests performed during the first encounter were included. We included any reference standard used to define deterioration to severe or critical disease that was provided by the authors.</p><p><strong>Data collection and analysis: </strong>Two review authors independently extracted data from each included study, and independently assessed the methodological quality using the Quality Assessment of Prognostic Accuracy Studies tool. As studies reported different thresholds for the same test, we used the Hierarchical Summary Receiver Operator Curve model for meta-analyses to estimate summary curves in SAS 9.4. We estimated the sensitivity at points on the SROC curves that corresponded to the median and interquartile range boundaries of specificities in the included studies. Direct and indirect comparisons were exclusively conducted for biomarkers with an estimated sensitivity and 95% CI of ≥ 50% at a specificity of ≥ 50%. The relative diagnostic odds ratio was calculated as a summary of the relative accuracy of these biomarkers.</p><p><strong>Main results: </strong>We identified a total of 64 studies, including 71,170 participants, of which 8169 participants died, and 4031 participants deteriorated to severe/critical condition. The studies assessed 53 different laboratory tests. For some tests, both increases and decreases relative to the normal range were included. There was important heterogeneity between tests and their cut-off values. None of the included studies had a low risk of bias or low concern for applicability for all domains. None of the tests included in this review demonstrated high sensitivity or specificity, or both. The five tests with summary sensitivity and specificity above 50% were: C-reactive protein increase, neutrophil-to-lymphocyte ratio increase, lymphocyte count decrease, d-dimer increase, and lactate dehydrogenase increase. Inflammation For mortality, summary sensitivity of a C-reactive protein increase was 76% (95% CI 73% to 79%) at median specificity, 59% (low-certainty evidence). For deterioration, summary sensitivity was 78% (95% CI 67% to 86%) at median specificity, 72% (very low-certainty evidence). For the combined outcome of mortality or deterioration, or both, summary sensitivity was 70% (95% CI 49% to 85%) at median specificity, 60% (very low-certainty evidence). For mortality, summary sensitivity of an increase in neutrophil-to-lymphocyte ratio was 69% (95% CI 66% to 72%) at median specificity, 63% (very low-certainty evidence). For deterioration, summary sensitivity was 75% (95% CI 59% to 87%) at median specificity, 71% (very low-certainty evidence). For mortality, summary sensitivity of a decrease in lymphocyte count was 67% (95% CI 56% to 77%) at median specificity, 61% (very low-certainty evidence). For deterioration, summary sensitivity of a decrease in lymphocyte count was 69% (95% CI 60% to 76%) at median specificity, 67% (very low-certainty evidence). For the combined outcome, summary sensitivity was 83% (95% CI 67% to 92%) at median specificity, 29% (very low-certainty evidence). For mortality, summary sensitivity of a lactate dehydrogenase increase was 82% (95% CI 66% to 91%) at median specificity, 60% (very low-certainty evidence). For deterioration, summary sensitivity of a lactate dehydrogenase increase was 79% (95% CI 76% to 82%) at median specificity, 66% (low-certainty evidence). For the combined outcome, summary sensitivity was 69% (95% CI 51% to 82%) at median specificity, 62% (very low-certainty evidence). Hypercoagulability For mortality, summary sensitivity of a d-dimer increase was 70% (95% CI 64% to 76%) at median specificity of 56% (very low-certainty evidence). For deterioration, summary sensitivity was 65% (95% CI 56% to 74%) at median specificity of 63% (very low-certainty evidence). For the combined outcome, summary sensitivity was 65% (95% CI 52% to 76%) at median specificity of 54% (very low-certainty evidence). To predict mortality, neutrophil-to-lymphocyte ratio increase had higher accuracy compared to d-dimer increase (RDOR (diagnostic Odds Ratio) 2.05, 95% CI 1.30 to 3.24), C-reactive protein increase (RDOR 2.64, 95% CI 2.09 to 3.33), and lymphocyte count decrease (RDOR 2.63, 95% CI 1.55 to 4.46). D-dimer increase had higher accuracy compared to lymphocyte count decrease (RDOR 1.49, 95% CI 1.23 to 1.80), C-reactive protein increase (RDOR 1.31, 95% CI 1.03 to 1.65), and lactate dehydrogenase increase (RDOR 1.42, 95% CI 1.05 to 1.90). Additionally, lactate dehydrogenase increase had higher accuracy compared to lymphocyte count decrease (RDOR 1.30, 95% CI 1.13 to 1.49). To predict deterioration to severe disease, C-reactive protein increase had higher accuracy compared to d-dimer increase (RDOR 1.76, 95% CI 1.25 to 2.50). The neutrophil-to-lymphocyte ratio increase had higher accuracy compared to d-dimer increase (RDOR 2.77, 95% CI 1.58 to 4.84). Lastly, lymphocyte count decrease had higher accuracy compared to d-dimer increase (RDOR 2.10, 95% CI 1.44 to 3.07) and lactate dehydrogenase increase (RDOR 2.22, 95% CI 1.52 to 3.26).</p><p><strong>Authors' conclusions: </strong>Laboratory tests, associated with hypercoagulability and hyperinflammatory response, were better at predicting severe disease and mortality in patients with SARS-CoV-2 compared to other laboratory tests. However, to safely rule out severe disease, tests should have high sensitivity (> 90%), and none of the identified laboratory tests met this criterion. In clinical practice, a more comprehensive assessment of a patient's health status is usually required by, for example, incorporating these laboratory tests into clinical prediction rules together with clinical symptoms, radiological findings, and patient's characteristics.</p>","PeriodicalId":10473,"journal":{"name":"Cochrane Database of Systematic Reviews","volume":"8 ","pages":"CD015050"},"PeriodicalIF":8.8000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11301994/pdf/","citationCount":"0","resultStr":"{\"title\":\"Accuracy of routine laboratory tests to predict mortality and deterioration to severe or critical COVID-19 in people with SARS-CoV-2.\",\"authors\":\"Liselore De Rop, David Ag Bos, Inge Stegeman, Gea Holtman, Eleanor A Ochodo, René Spijker, Jenifer A Otieno, Fade Alkhlaileh, Jonathan J Deeks, Jacqueline Dinnes, Ann Van den Bruel, Matthew Df McInnes, Mariska Mg Leeflang, Jan Y Verbakel\",\"doi\":\"10.1002/14651858.CD015050.pub2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Identifying patients with COVID-19 disease who will deteriorate can be useful to assess whether they should receive intensive care, or whether they can be treated in a less intensive way or through outpatient care. In clinical care, routine laboratory markers, such as C-reactive protein, are used to assess a person's health status.</p><p><strong>Objectives: </strong>To assess the accuracy of routine blood-based laboratory tests to predict mortality and deterioration to severe or critical (from mild or moderate) COVID-19 in people with SARS-CoV-2.</p><p><strong>Search methods: </strong>On 25 August 2022, we searched the Cochrane COVID-19 Study Register, encompassing searches of various databases such as MEDLINE via PubMed, CENTRAL, Embase, medRxiv, and ClinicalTrials.gov. We did not apply any language restrictions.</p><p><strong>Selection criteria: </strong>We included studies of all designs that produced estimates of prognostic accuracy in participants who presented to outpatient services, or were admitted to general hospital wards with confirmed SARS-CoV-2 infection, and studies that were based on serum banks of samples from people. All routine blood-based laboratory tests performed during the first encounter were included. We included any reference standard used to define deterioration to severe or critical disease that was provided by the authors.</p><p><strong>Data collection and analysis: </strong>Two review authors independently extracted data from each included study, and independently assessed the methodological quality using the Quality Assessment of Prognostic Accuracy Studies tool. As studies reported different thresholds for the same test, we used the Hierarchical Summary Receiver Operator Curve model for meta-analyses to estimate summary curves in SAS 9.4. We estimated the sensitivity at points on the SROC curves that corresponded to the median and interquartile range boundaries of specificities in the included studies. Direct and indirect comparisons were exclusively conducted for biomarkers with an estimated sensitivity and 95% CI of ≥ 50% at a specificity of ≥ 50%. The relative diagnostic odds ratio was calculated as a summary of the relative accuracy of these biomarkers.</p><p><strong>Main results: </strong>We identified a total of 64 studies, including 71,170 participants, of which 8169 participants died, and 4031 participants deteriorated to severe/critical condition. The studies assessed 53 different laboratory tests. For some tests, both increases and decreases relative to the normal range were included. There was important heterogeneity between tests and their cut-off values. None of the included studies had a low risk of bias or low concern for applicability for all domains. None of the tests included in this review demonstrated high sensitivity or specificity, or both. The five tests with summary sensitivity and specificity above 50% were: C-reactive protein increase, neutrophil-to-lymphocyte ratio increase, lymphocyte count decrease, d-dimer increase, and lactate dehydrogenase increase. Inflammation For mortality, summary sensitivity of a C-reactive protein increase was 76% (95% CI 73% to 79%) at median specificity, 59% (low-certainty evidence). For deterioration, summary sensitivity was 78% (95% CI 67% to 86%) at median specificity, 72% (very low-certainty evidence). For the combined outcome of mortality or deterioration, or both, summary sensitivity was 70% (95% CI 49% to 85%) at median specificity, 60% (very low-certainty evidence). For mortality, summary sensitivity of an increase in neutrophil-to-lymphocyte ratio was 69% (95% CI 66% to 72%) at median specificity, 63% (very low-certainty evidence). For deterioration, summary sensitivity was 75% (95% CI 59% to 87%) at median specificity, 71% (very low-certainty evidence). For mortality, summary sensitivity of a decrease in lymphocyte count was 67% (95% CI 56% to 77%) at median specificity, 61% (very low-certainty evidence). For deterioration, summary sensitivity of a decrease in lymphocyte count was 69% (95% CI 60% to 76%) at median specificity, 67% (very low-certainty evidence). For the combined outcome, summary sensitivity was 83% (95% CI 67% to 92%) at median specificity, 29% (very low-certainty evidence). For mortality, summary sensitivity of a lactate dehydrogenase increase was 82% (95% CI 66% to 91%) at median specificity, 60% (very low-certainty evidence). For deterioration, summary sensitivity of a lactate dehydrogenase increase was 79% (95% CI 76% to 82%) at median specificity, 66% (low-certainty evidence). For the combined outcome, summary sensitivity was 69% (95% CI 51% to 82%) at median specificity, 62% (very low-certainty evidence). Hypercoagulability For mortality, summary sensitivity of a d-dimer increase was 70% (95% CI 64% to 76%) at median specificity of 56% (very low-certainty evidence). For deterioration, summary sensitivity was 65% (95% CI 56% to 74%) at median specificity of 63% (very low-certainty evidence). For the combined outcome, summary sensitivity was 65% (95% CI 52% to 76%) at median specificity of 54% (very low-certainty evidence). To predict mortality, neutrophil-to-lymphocyte ratio increase had higher accuracy compared to d-dimer increase (RDOR (diagnostic Odds Ratio) 2.05, 95% CI 1.30 to 3.24), C-reactive protein increase (RDOR 2.64, 95% CI 2.09 to 3.33), and lymphocyte count decrease (RDOR 2.63, 95% CI 1.55 to 4.46). D-dimer increase had higher accuracy compared to lymphocyte count decrease (RDOR 1.49, 95% CI 1.23 to 1.80), C-reactive protein increase (RDOR 1.31, 95% CI 1.03 to 1.65), and lactate dehydrogenase increase (RDOR 1.42, 95% CI 1.05 to 1.90). Additionally, lactate dehydrogenase increase had higher accuracy compared to lymphocyte count decrease (RDOR 1.30, 95% CI 1.13 to 1.49). To predict deterioration to severe disease, C-reactive protein increase had higher accuracy compared to d-dimer increase (RDOR 1.76, 95% CI 1.25 to 2.50). The neutrophil-to-lymphocyte ratio increase had higher accuracy compared to d-dimer increase (RDOR 2.77, 95% CI 1.58 to 4.84). Lastly, lymphocyte count decrease had higher accuracy compared to d-dimer increase (RDOR 2.10, 95% CI 1.44 to 3.07) and lactate dehydrogenase increase (RDOR 2.22, 95% CI 1.52 to 3.26).</p><p><strong>Authors' conclusions: </strong>Laboratory tests, associated with hypercoagulability and hyperinflammatory response, were better at predicting severe disease and mortality in patients with SARS-CoV-2 compared to other laboratory tests. However, to safely rule out severe disease, tests should have high sensitivity (> 90%), and none of the identified laboratory tests met this criterion. In clinical practice, a more comprehensive assessment of a patient's health status is usually required by, for example, incorporating these laboratory tests into clinical prediction rules together with clinical symptoms, radiological findings, and patient's characteristics.</p>\",\"PeriodicalId\":10473,\"journal\":{\"name\":\"Cochrane Database of Systematic Reviews\",\"volume\":\"8 \",\"pages\":\"CD015050\"},\"PeriodicalIF\":8.8000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11301994/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cochrane Database of Systematic Reviews\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/14651858.CD015050.pub2\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cochrane Database of Systematic Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/14651858.CD015050.pub2","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

摘要

综合结果的灵敏度为 65%(95% CI 52% 至 76%),特异性中位数为 54%(极低确定性证据)。在预测死亡率方面,中性粒细胞与淋巴细胞比值升高的准确性高于二聚体升高(诊断比值比为 2.05,95% CI 为 1.30 至 3.24)、C 反应蛋白升高(诊断比值比为 2.64,95% CI 为 2.09 至 3.33)和淋巴细胞计数减少(诊断比值比为 2.63,95% CI 为 1.55 至 4.46)。与淋巴细胞计数减少(RDOR 1.49,95% CI 1.23 至 1.80)、C 反应蛋白增加(RDOR 1.31,95% CI 1.03 至 1.65)和乳酸脱氢酶增加(RDOR 1.42,95% CI 1.05 至 1.90)相比,D-二聚体增加的准确性更高。此外,乳酸脱氢酶升高的准确性高于淋巴细胞计数下降(RDOR 1.30,95% CI 1.13 至 1.49)。在预测病情恶化至重症方面,C 反应蛋白升高的准确率高于二聚体升高的准确率(RDOR 1.76,95% CI 1.25 至 2.50)。与二聚体增加相比,中性粒细胞与淋巴细胞比值增加的准确率更高(RDOR 2.77,95% CI 1.58 至 4.84)。最后,与二聚体增加(RDOR 2.10,95% CI 1.44 至 3.07)和乳酸脱氢酶增加(RDOR 2.22,95% CI 1.52 至 3.26)相比,淋巴细胞计数减少的准确性更高:与其他实验室检查相比,与高凝状态和高炎症反应相关的实验室检查能更好地预测 SARS-CoV-2 患者的严重疾病和死亡率。然而,要安全地排除严重疾病,检测项目应具有较高的灵敏度(> 90%),而已确定的实验室检测项目均不符合这一标准。在临床实践中,通常需要对患者的健康状况进行更全面的评估,例如将这些实验室检测与临床症状、放射学检查结果和患者特征一起纳入临床预测规则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Accuracy of routine laboratory tests to predict mortality and deterioration to severe or critical COVID-19 in people with SARS-CoV-2.

Background: Identifying patients with COVID-19 disease who will deteriorate can be useful to assess whether they should receive intensive care, or whether they can be treated in a less intensive way or through outpatient care. In clinical care, routine laboratory markers, such as C-reactive protein, are used to assess a person's health status.

Objectives: To assess the accuracy of routine blood-based laboratory tests to predict mortality and deterioration to severe or critical (from mild or moderate) COVID-19 in people with SARS-CoV-2.

Search methods: On 25 August 2022, we searched the Cochrane COVID-19 Study Register, encompassing searches of various databases such as MEDLINE via PubMed, CENTRAL, Embase, medRxiv, and ClinicalTrials.gov. We did not apply any language restrictions.

Selection criteria: We included studies of all designs that produced estimates of prognostic accuracy in participants who presented to outpatient services, or were admitted to general hospital wards with confirmed SARS-CoV-2 infection, and studies that were based on serum banks of samples from people. All routine blood-based laboratory tests performed during the first encounter were included. We included any reference standard used to define deterioration to severe or critical disease that was provided by the authors.

Data collection and analysis: Two review authors independently extracted data from each included study, and independently assessed the methodological quality using the Quality Assessment of Prognostic Accuracy Studies tool. As studies reported different thresholds for the same test, we used the Hierarchical Summary Receiver Operator Curve model for meta-analyses to estimate summary curves in SAS 9.4. We estimated the sensitivity at points on the SROC curves that corresponded to the median and interquartile range boundaries of specificities in the included studies. Direct and indirect comparisons were exclusively conducted for biomarkers with an estimated sensitivity and 95% CI of ≥ 50% at a specificity of ≥ 50%. The relative diagnostic odds ratio was calculated as a summary of the relative accuracy of these biomarkers.

Main results: We identified a total of 64 studies, including 71,170 participants, of which 8169 participants died, and 4031 participants deteriorated to severe/critical condition. The studies assessed 53 different laboratory tests. For some tests, both increases and decreases relative to the normal range were included. There was important heterogeneity between tests and their cut-off values. None of the included studies had a low risk of bias or low concern for applicability for all domains. None of the tests included in this review demonstrated high sensitivity or specificity, or both. The five tests with summary sensitivity and specificity above 50% were: C-reactive protein increase, neutrophil-to-lymphocyte ratio increase, lymphocyte count decrease, d-dimer increase, and lactate dehydrogenase increase. Inflammation For mortality, summary sensitivity of a C-reactive protein increase was 76% (95% CI 73% to 79%) at median specificity, 59% (low-certainty evidence). For deterioration, summary sensitivity was 78% (95% CI 67% to 86%) at median specificity, 72% (very low-certainty evidence). For the combined outcome of mortality or deterioration, or both, summary sensitivity was 70% (95% CI 49% to 85%) at median specificity, 60% (very low-certainty evidence). For mortality, summary sensitivity of an increase in neutrophil-to-lymphocyte ratio was 69% (95% CI 66% to 72%) at median specificity, 63% (very low-certainty evidence). For deterioration, summary sensitivity was 75% (95% CI 59% to 87%) at median specificity, 71% (very low-certainty evidence). For mortality, summary sensitivity of a decrease in lymphocyte count was 67% (95% CI 56% to 77%) at median specificity, 61% (very low-certainty evidence). For deterioration, summary sensitivity of a decrease in lymphocyte count was 69% (95% CI 60% to 76%) at median specificity, 67% (very low-certainty evidence). For the combined outcome, summary sensitivity was 83% (95% CI 67% to 92%) at median specificity, 29% (very low-certainty evidence). For mortality, summary sensitivity of a lactate dehydrogenase increase was 82% (95% CI 66% to 91%) at median specificity, 60% (very low-certainty evidence). For deterioration, summary sensitivity of a lactate dehydrogenase increase was 79% (95% CI 76% to 82%) at median specificity, 66% (low-certainty evidence). For the combined outcome, summary sensitivity was 69% (95% CI 51% to 82%) at median specificity, 62% (very low-certainty evidence). Hypercoagulability For mortality, summary sensitivity of a d-dimer increase was 70% (95% CI 64% to 76%) at median specificity of 56% (very low-certainty evidence). For deterioration, summary sensitivity was 65% (95% CI 56% to 74%) at median specificity of 63% (very low-certainty evidence). For the combined outcome, summary sensitivity was 65% (95% CI 52% to 76%) at median specificity of 54% (very low-certainty evidence). To predict mortality, neutrophil-to-lymphocyte ratio increase had higher accuracy compared to d-dimer increase (RDOR (diagnostic Odds Ratio) 2.05, 95% CI 1.30 to 3.24), C-reactive protein increase (RDOR 2.64, 95% CI 2.09 to 3.33), and lymphocyte count decrease (RDOR 2.63, 95% CI 1.55 to 4.46). D-dimer increase had higher accuracy compared to lymphocyte count decrease (RDOR 1.49, 95% CI 1.23 to 1.80), C-reactive protein increase (RDOR 1.31, 95% CI 1.03 to 1.65), and lactate dehydrogenase increase (RDOR 1.42, 95% CI 1.05 to 1.90). Additionally, lactate dehydrogenase increase had higher accuracy compared to lymphocyte count decrease (RDOR 1.30, 95% CI 1.13 to 1.49). To predict deterioration to severe disease, C-reactive protein increase had higher accuracy compared to d-dimer increase (RDOR 1.76, 95% CI 1.25 to 2.50). The neutrophil-to-lymphocyte ratio increase had higher accuracy compared to d-dimer increase (RDOR 2.77, 95% CI 1.58 to 4.84). Lastly, lymphocyte count decrease had higher accuracy compared to d-dimer increase (RDOR 2.10, 95% CI 1.44 to 3.07) and lactate dehydrogenase increase (RDOR 2.22, 95% CI 1.52 to 3.26).

Authors' conclusions: Laboratory tests, associated with hypercoagulability and hyperinflammatory response, were better at predicting severe disease and mortality in patients with SARS-CoV-2 compared to other laboratory tests. However, to safely rule out severe disease, tests should have high sensitivity (> 90%), and none of the identified laboratory tests met this criterion. In clinical practice, a more comprehensive assessment of a patient's health status is usually required by, for example, incorporating these laboratory tests into clinical prediction rules together with clinical symptoms, radiological findings, and patient's characteristics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.60
自引率
2.40%
发文量
173
审稿时长
1-2 weeks
期刊介绍: The Cochrane Database of Systematic Reviews (CDSR) stands as the premier database for systematic reviews in healthcare. It comprises Cochrane Reviews, along with protocols for these reviews, editorials, and supplements. Owned and operated by Cochrane, a worldwide independent network of healthcare stakeholders, the CDSR (ISSN 1469-493X) encompasses a broad spectrum of health-related topics, including health services.
期刊最新文献
Glucocorticoid facet joint injection for chronic back or neck pain. Methylxanthines for the prevention or treatment of intermittent hypoxemia or respiratory insufficiency in late preterm infants. Omega-3 fatty acid supplementation for depression in children and adolescents. Calcium supplementation (other than for preventing or treating hypertension) for improving pregnancy and infant outcomes. Minimizing blood sampling in preterm infants.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1