使用基于变压器的神经网络从文本数据中提取 miRNA 与疾病关系的数据集。

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-08-05 DOI:10.1093/database/baae066
Sumit Madan, Lisa Kühnel, Holger Fröhlich, Martin Hofmann-Apitius, Juliane Fluck
{"title":"使用基于变压器的神经网络从文本数据中提取 miRNA 与疾病关系的数据集。","authors":"Sumit Madan, Lisa Kühnel, Holger Fröhlich, Martin Hofmann-Apitius, Juliane Fluck","doi":"10.1093/database/baae066","DOIUrl":null,"url":null,"abstract":"<p><p>MicroRNAs (miRNAs) play important roles in post-transcriptional processes and regulate major cellular functions. The abnormal regulation of expression of miRNAs has been linked to numerous human diseases such as respiratory diseases, cancer, and neurodegenerative diseases. Latest miRNA-disease associations are predominantly found in unstructured biomedical literature. Retrieving these associations manually can be cumbersome and time-consuming due to the continuously expanding number of publications. We propose a deep learning-based text mining approach that extracts normalized miRNA-disease associations from biomedical literature. To train the deep learning models, we build a new training corpus that is extended by distant supervision utilizing multiple external databases. A quantitative evaluation shows that the workflow achieves an area under receiver operator characteristic curve of 98% on a holdout test set for the detection of miRNA-disease associations. We demonstrate the applicability of the approach by extracting new miRNA-disease associations from biomedical literature (PubMed and PubMed Central). We have shown through quantitative analysis and evaluation on three different neurodegenerative diseases that our approach can effectively extract miRNA-disease associations not yet available in public databases. Database URL: https://zenodo.org/records/10523046.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11300841/pdf/","citationCount":"0","resultStr":"{\"title\":\"Dataset of miRNA-disease relations extracted from textual data using transformer-based neural networks.\",\"authors\":\"Sumit Madan, Lisa Kühnel, Holger Fröhlich, Martin Hofmann-Apitius, Juliane Fluck\",\"doi\":\"10.1093/database/baae066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>MicroRNAs (miRNAs) play important roles in post-transcriptional processes and regulate major cellular functions. The abnormal regulation of expression of miRNAs has been linked to numerous human diseases such as respiratory diseases, cancer, and neurodegenerative diseases. Latest miRNA-disease associations are predominantly found in unstructured biomedical literature. Retrieving these associations manually can be cumbersome and time-consuming due to the continuously expanding number of publications. We propose a deep learning-based text mining approach that extracts normalized miRNA-disease associations from biomedical literature. To train the deep learning models, we build a new training corpus that is extended by distant supervision utilizing multiple external databases. A quantitative evaluation shows that the workflow achieves an area under receiver operator characteristic curve of 98% on a holdout test set for the detection of miRNA-disease associations. We demonstrate the applicability of the approach by extracting new miRNA-disease associations from biomedical literature (PubMed and PubMed Central). We have shown through quantitative analysis and evaluation on three different neurodegenerative diseases that our approach can effectively extract miRNA-disease associations not yet available in public databases. Database URL: https://zenodo.org/records/10523046.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11300841/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/database/baae066\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/database/baae066","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

微小核糖核酸(miRNA)在转录后过程中发挥着重要作用,并调控着细胞的主要功能。miRNAs 表达的异常调控与许多人类疾病有关,如呼吸系统疾病、癌症和神经退行性疾病。最新的 miRNA 与疾病的关联主要存在于非结构化的生物医学文献中。由于论文数量不断增加,手动检索这些关联可能会非常麻烦和耗时。我们提出了一种基于深度学习的文本挖掘方法,可从生物医学文献中提取归一化的 miRNA-疾病关联。为了训练深度学习模型,我们建立了一个新的训练语料库,该语料库通过利用多个外部数据库进行远距离监督来扩展。定量评估结果表明,该工作流程在检测 miRNA-疾病关联时,在保留测试集上的接收者操作者特征曲线下面积达到了 98%。我们通过从生物医学文献(PubMed 和 PubMed Central)中提取新的 miRNA-疾病关联来证明该方法的适用性。我们通过对三种不同神经退行性疾病的定量分析和评估表明,我们的方法可以有效地提取公共数据库中尚未提供的 miRNA-疾病关联。数据库网址:https://zenodo.org/records/10523046。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dataset of miRNA-disease relations extracted from textual data using transformer-based neural networks.

MicroRNAs (miRNAs) play important roles in post-transcriptional processes and regulate major cellular functions. The abnormal regulation of expression of miRNAs has been linked to numerous human diseases such as respiratory diseases, cancer, and neurodegenerative diseases. Latest miRNA-disease associations are predominantly found in unstructured biomedical literature. Retrieving these associations manually can be cumbersome and time-consuming due to the continuously expanding number of publications. We propose a deep learning-based text mining approach that extracts normalized miRNA-disease associations from biomedical literature. To train the deep learning models, we build a new training corpus that is extended by distant supervision utilizing multiple external databases. A quantitative evaluation shows that the workflow achieves an area under receiver operator characteristic curve of 98% on a holdout test set for the detection of miRNA-disease associations. We demonstrate the applicability of the approach by extracting new miRNA-disease associations from biomedical literature (PubMed and PubMed Central). We have shown through quantitative analysis and evaluation on three different neurodegenerative diseases that our approach can effectively extract miRNA-disease associations not yet available in public databases. Database URL: https://zenodo.org/records/10523046.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1