利用结果导向聚类分析识别 1 型糖尿病风险表型。

IF 8.4 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Diabetologia Pub Date : 2024-11-01 Epub Date: 2024-08-06 DOI:10.1007/s00125-024-06246-w
Lu You, Lauric A Ferrat, Richard A Oram, Hemang M Parikh, Andrea K Steck, Jeffrey Krischer, Maria J Redondo
{"title":"利用结果导向聚类分析识别 1 型糖尿病风险表型。","authors":"Lu You, Lauric A Ferrat, Richard A Oram, Hemang M Parikh, Andrea K Steck, Jeffrey Krischer, Maria J Redondo","doi":"10.1007/s00125-024-06246-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims/hypothesis: </strong>Although statistical models for predicting type 1 diabetes risk have been developed, approaches that reveal the heterogeneity of the at-risk population by identifying clinically meaningful clusters are lacking. We aimed to identify and characterise clusters of islet autoantibody-positive individuals who share similar characteristics and type 1 diabetes risk.</p><p><strong>Methods: </strong>We tested a novel outcome-guided clustering method in initially non-diabetic autoantibody-positive relatives of individuals with type 1 diabetes, using the TrialNet Pathway to Prevention study data (n=1123). The outcome of the analysis was the time to development of type 1 diabetes, and variables in the model included demographic characteristics, genetics, metabolic factors and islet autoantibodies. An independent dataset (the Diabetes Prevention Trial of Type 1 Diabetes Study) (n=706) was used for validation.</p><p><strong>Results: </strong>The analysis revealed six clusters with varying type 1 diabetes risks, categorised into three groups based on the hierarchy of clusters. Group A comprised one cluster with high glucose levels (median for glucose mean AUC 9.48 mmol/l; IQR 9.16-10.02) and high risk (2-year diabetes-free survival probability 0.42; 95% CI 0.34, 0.51). Group B comprised one cluster with high IA-2A titres (median 287 DK units/ml; IQR 250-319) and elevated autoantibody titres (2-year diabetes-free survival probability 0.73; 95% CI 0.67, 0.80). Group C comprised four lower-risk clusters with lower autoantibody titres and glucose levels (with 2-year diabetes-free survival probability ranging from 0.84-0.99 in the four clusters). Within group C, the clusters exhibit variations in characteristics such as glucose levels, C-peptide levels and age. A decision rule for assigning individuals to clusters was developed. Use of the validation dataset confirmed that the clusters can identify individuals with similar characteristics.</p><p><strong>Conclusions/interpretation: </strong>Demographic, metabolic, immunological and genetic markers may be used to identify clusters of distinctive characteristics and different risks of progression to type 1 diabetes among autoantibody-positive individuals with a family history of type 1 diabetes. The results also revealed the heterogeneity in the population and complex interactions between variables.</p>","PeriodicalId":11164,"journal":{"name":"Diabetologia","volume":" ","pages":"2507-2517"},"PeriodicalIF":8.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of type 1 diabetes risk phenotypes using an outcome-guided clustering analysis.\",\"authors\":\"Lu You, Lauric A Ferrat, Richard A Oram, Hemang M Parikh, Andrea K Steck, Jeffrey Krischer, Maria J Redondo\",\"doi\":\"10.1007/s00125-024-06246-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aims/hypothesis: </strong>Although statistical models for predicting type 1 diabetes risk have been developed, approaches that reveal the heterogeneity of the at-risk population by identifying clinically meaningful clusters are lacking. We aimed to identify and characterise clusters of islet autoantibody-positive individuals who share similar characteristics and type 1 diabetes risk.</p><p><strong>Methods: </strong>We tested a novel outcome-guided clustering method in initially non-diabetic autoantibody-positive relatives of individuals with type 1 diabetes, using the TrialNet Pathway to Prevention study data (n=1123). The outcome of the analysis was the time to development of type 1 diabetes, and variables in the model included demographic characteristics, genetics, metabolic factors and islet autoantibodies. An independent dataset (the Diabetes Prevention Trial of Type 1 Diabetes Study) (n=706) was used for validation.</p><p><strong>Results: </strong>The analysis revealed six clusters with varying type 1 diabetes risks, categorised into three groups based on the hierarchy of clusters. Group A comprised one cluster with high glucose levels (median for glucose mean AUC 9.48 mmol/l; IQR 9.16-10.02) and high risk (2-year diabetes-free survival probability 0.42; 95% CI 0.34, 0.51). Group B comprised one cluster with high IA-2A titres (median 287 DK units/ml; IQR 250-319) and elevated autoantibody titres (2-year diabetes-free survival probability 0.73; 95% CI 0.67, 0.80). Group C comprised four lower-risk clusters with lower autoantibody titres and glucose levels (with 2-year diabetes-free survival probability ranging from 0.84-0.99 in the four clusters). Within group C, the clusters exhibit variations in characteristics such as glucose levels, C-peptide levels and age. A decision rule for assigning individuals to clusters was developed. Use of the validation dataset confirmed that the clusters can identify individuals with similar characteristics.</p><p><strong>Conclusions/interpretation: </strong>Demographic, metabolic, immunological and genetic markers may be used to identify clusters of distinctive characteristics and different risks of progression to type 1 diabetes among autoantibody-positive individuals with a family history of type 1 diabetes. The results also revealed the heterogeneity in the population and complex interactions between variables.</p>\",\"PeriodicalId\":11164,\"journal\":{\"name\":\"Diabetologia\",\"volume\":\" \",\"pages\":\"2507-2517\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diabetologia\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00125-024-06246-w\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetologia","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00125-024-06246-w","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

目的/假设:虽然预测 1 型糖尿病风险的统计模型已经开发出来,但还缺乏通过识别具有临床意义的群组来揭示高危人群异质性的方法。我们的目标是识别和描述具有相似特征和 1 型糖尿病风险的胰岛自身抗体阳性个体群:我们利用 TrialNet Pathway to Prevention 研究数据(n=1123),在 1 型糖尿病患者的初始非糖尿病自身抗体阳性亲属中测试了一种新的结果指导聚类方法。分析结果是1型糖尿病的发病时间,模型中的变量包括人口统计学特征、遗传学、代谢因素和胰岛自身抗体。一个独立的数据集(1型糖尿病预防试验研究)(n=706)被用于验证:分析结果显示,有六个群组存在不同的1型糖尿病风险,根据群组的层次分为三组。A 组包括一个血糖水平高(血糖平均 AUC 中位数为 9.48 mmol/l;IQR 为 9.16-10.02)和风险高(2 年无糖尿病生存概率为 0.42;95% CI 为 0.34,0.51)的群组。B 组包括一个 IA-2A 滴度较高(中位数为 287 DK 单位/毫升;IQR 为 250-319)和自身抗体滴度升高的群组(2 年无糖尿病生存概率为 0.73;95% CI 为 0.67,0.80)。C 组包括四个风险较低、自身抗体滴度和血糖水平较低的群组(四个群组的 2 年无糖尿病生存概率在 0.84-0.99 之间)。在 C 组中,各群组在血糖水平、C 肽水平和年龄等特征方面存在差异。我们制定了将个体分配到群组的决策规则。使用验证数据集证实,聚类可以识别具有相似特征的个体:人口学、代谢、免疫学和遗传标记可用于在有 1 型糖尿病家族史的自身抗体阳性个体中识别具有独特特征和不同进展为 1 型糖尿病风险的聚类。研究结果还揭示了人群的异质性和变量之间复杂的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identification of type 1 diabetes risk phenotypes using an outcome-guided clustering analysis.

Aims/hypothesis: Although statistical models for predicting type 1 diabetes risk have been developed, approaches that reveal the heterogeneity of the at-risk population by identifying clinically meaningful clusters are lacking. We aimed to identify and characterise clusters of islet autoantibody-positive individuals who share similar characteristics and type 1 diabetes risk.

Methods: We tested a novel outcome-guided clustering method in initially non-diabetic autoantibody-positive relatives of individuals with type 1 diabetes, using the TrialNet Pathway to Prevention study data (n=1123). The outcome of the analysis was the time to development of type 1 diabetes, and variables in the model included demographic characteristics, genetics, metabolic factors and islet autoantibodies. An independent dataset (the Diabetes Prevention Trial of Type 1 Diabetes Study) (n=706) was used for validation.

Results: The analysis revealed six clusters with varying type 1 diabetes risks, categorised into three groups based on the hierarchy of clusters. Group A comprised one cluster with high glucose levels (median for glucose mean AUC 9.48 mmol/l; IQR 9.16-10.02) and high risk (2-year diabetes-free survival probability 0.42; 95% CI 0.34, 0.51). Group B comprised one cluster with high IA-2A titres (median 287 DK units/ml; IQR 250-319) and elevated autoantibody titres (2-year diabetes-free survival probability 0.73; 95% CI 0.67, 0.80). Group C comprised four lower-risk clusters with lower autoantibody titres and glucose levels (with 2-year diabetes-free survival probability ranging from 0.84-0.99 in the four clusters). Within group C, the clusters exhibit variations in characteristics such as glucose levels, C-peptide levels and age. A decision rule for assigning individuals to clusters was developed. Use of the validation dataset confirmed that the clusters can identify individuals with similar characteristics.

Conclusions/interpretation: Demographic, metabolic, immunological and genetic markers may be used to identify clusters of distinctive characteristics and different risks of progression to type 1 diabetes among autoantibody-positive individuals with a family history of type 1 diabetes. The results also revealed the heterogeneity in the population and complex interactions between variables.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Diabetologia
Diabetologia 医学-内分泌学与代谢
CiteScore
18.10
自引率
2.40%
发文量
193
审稿时长
1 months
期刊介绍: Diabetologia, the authoritative journal dedicated to diabetes research, holds high visibility through society membership, libraries, and social media. As the official journal of the European Association for the Study of Diabetes, it is ranked in the top quartile of the 2019 JCR Impact Factors in the Endocrinology & Metabolism category. The journal boasts dedicated and expert editorial teams committed to supporting authors throughout the peer review process.
期刊最新文献
Correction: A whole-food, plant-based intensive lifestyle intervention improves glycaemic control and reduces medications in individuals with type 2 diabetes: a randomised controlled trial. Correction: Applying technologies to simplify strategies for exercise in type 1 diabetes. Autoimmune diseases and the risk and prognosis of latent autoimmune diabetes in adults. Characterising impaired awareness of hypoglycaemia and associated risks through HypoA-Q: findings from a T1D Exchange cohort. Diabetes knowledge and behaviour: a cross-sectional study of Jordanian adults.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1