{"title":"人工智能关联彩色成像提高了早期胃癌的检测率。","authors":"Youshen Zhao, Osamu Dohi, Tsugitaka Ishida, Naohisa Yoshida, Tomoko Ochiai, Hiroki Mukai, Mayuko Seya, Katsuma Yamauchi, Hajime Miyazaki, Hayato Fukui, Takeshi Yasuda, Naoto Iwai, Ken Inoue, Yoshito Itoh, Xinkai Liu, Ruiyao Zhang, Xin Zhu","doi":"10.1159/000540728","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Esophagogastroduodenoscopy is the most important tool to detect gastric cancer (GC). In this study, we developed a computer-aided detection (CADe) system to detect GC with white light imaging (WLI) and linked color imaging (LCI) modes and aimed to compare the performance of CADe with that of endoscopists.</p><p><strong>Methods: </strong>The system was developed based on the deep learning framework from 9,021 images in 385 patients between 2017 and 2020. A total of 116 LCI and WLI videos from 110 patients between 2017 and 2023 were used to evaluate per-case sensitivity and per-frame specificity.</p><p><strong>Results: </strong>The per-case sensitivity and per-frame specificity of CADe with a confidence level of 0.5 in detecting GC were 78.6% and 93.4% for WLI and 94.0% and 93.3% for LCI, respectively (p < 0.001). The per-case sensitivities of nonexpert endoscopists for WLI and LCI were 45.8% and 80.4%, whereas those of expert endoscopists were 66.7% and 90.6%, respectively. Regarding detectability between CADe and endoscopists, the per-case sensitivities for WLI and LCI were 78.6% and 94.0% in CADe, respectively, which were significantly higher than those for LCI in experts (90.6%, p = 0.004) and those for WLI and LCI in nonexperts (45.8% and 80.4%, respectively, p < 0.001); however, no significant difference for WLI was observed between CADe and experts (p = 0.134).</p><p><strong>Conclusions: </strong>Our CADe system showed significantly better sensitivity in detecting GC when used in LCI compared with WLI mode. Moreover, the sensitivity of CADe using LCI is significantly higher than those of expert endoscopists using LCI to detect GC.</p>","PeriodicalId":11294,"journal":{"name":"Digestive Diseases","volume":" ","pages":"503-511"},"PeriodicalIF":2.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Linked Color Imaging with Artificial Intelligence Improves the Detection of Early Gastric Cancer.\",\"authors\":\"Youshen Zhao, Osamu Dohi, Tsugitaka Ishida, Naohisa Yoshida, Tomoko Ochiai, Hiroki Mukai, Mayuko Seya, Katsuma Yamauchi, Hajime Miyazaki, Hayato Fukui, Takeshi Yasuda, Naoto Iwai, Ken Inoue, Yoshito Itoh, Xinkai Liu, Ruiyao Zhang, Xin Zhu\",\"doi\":\"10.1159/000540728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Esophagogastroduodenoscopy is the most important tool to detect gastric cancer (GC). In this study, we developed a computer-aided detection (CADe) system to detect GC with white light imaging (WLI) and linked color imaging (LCI) modes and aimed to compare the performance of CADe with that of endoscopists.</p><p><strong>Methods: </strong>The system was developed based on the deep learning framework from 9,021 images in 385 patients between 2017 and 2020. A total of 116 LCI and WLI videos from 110 patients between 2017 and 2023 were used to evaluate per-case sensitivity and per-frame specificity.</p><p><strong>Results: </strong>The per-case sensitivity and per-frame specificity of CADe with a confidence level of 0.5 in detecting GC were 78.6% and 93.4% for WLI and 94.0% and 93.3% for LCI, respectively (p < 0.001). The per-case sensitivities of nonexpert endoscopists for WLI and LCI were 45.8% and 80.4%, whereas those of expert endoscopists were 66.7% and 90.6%, respectively. Regarding detectability between CADe and endoscopists, the per-case sensitivities for WLI and LCI were 78.6% and 94.0% in CADe, respectively, which were significantly higher than those for LCI in experts (90.6%, p = 0.004) and those for WLI and LCI in nonexperts (45.8% and 80.4%, respectively, p < 0.001); however, no significant difference for WLI was observed between CADe and experts (p = 0.134).</p><p><strong>Conclusions: </strong>Our CADe system showed significantly better sensitivity in detecting GC when used in LCI compared with WLI mode. Moreover, the sensitivity of CADe using LCI is significantly higher than those of expert endoscopists using LCI to detect GC.</p>\",\"PeriodicalId\":11294,\"journal\":{\"name\":\"Digestive Diseases\",\"volume\":\" \",\"pages\":\"503-511\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digestive Diseases\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1159/000540728\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"GASTROENTEROLOGY & HEPATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digestive Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000540728","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
Linked Color Imaging with Artificial Intelligence Improves the Detection of Early Gastric Cancer.
Introduction: Esophagogastroduodenoscopy is the most important tool to detect gastric cancer (GC). In this study, we developed a computer-aided detection (CADe) system to detect GC with white light imaging (WLI) and linked color imaging (LCI) modes and aimed to compare the performance of CADe with that of endoscopists.
Methods: The system was developed based on the deep learning framework from 9,021 images in 385 patients between 2017 and 2020. A total of 116 LCI and WLI videos from 110 patients between 2017 and 2023 were used to evaluate per-case sensitivity and per-frame specificity.
Results: The per-case sensitivity and per-frame specificity of CADe with a confidence level of 0.5 in detecting GC were 78.6% and 93.4% for WLI and 94.0% and 93.3% for LCI, respectively (p < 0.001). The per-case sensitivities of nonexpert endoscopists for WLI and LCI were 45.8% and 80.4%, whereas those of expert endoscopists were 66.7% and 90.6%, respectively. Regarding detectability between CADe and endoscopists, the per-case sensitivities for WLI and LCI were 78.6% and 94.0% in CADe, respectively, which were significantly higher than those for LCI in experts (90.6%, p = 0.004) and those for WLI and LCI in nonexperts (45.8% and 80.4%, respectively, p < 0.001); however, no significant difference for WLI was observed between CADe and experts (p = 0.134).
Conclusions: Our CADe system showed significantly better sensitivity in detecting GC when used in LCI compared with WLI mode. Moreover, the sensitivity of CADe using LCI is significantly higher than those of expert endoscopists using LCI to detect GC.
期刊介绍:
Each issue of this journal is dedicated to a special topic of current interest, covering both clinical and basic science topics in gastrointestinal function and disorders. The contents of each issue are comprehensive and reflect the state of the art, featuring editorials, reviews, mini reviews and original papers. These individual contributions encompass a variety of disciplines including all fields of gastroenterology. ''Digestive Diseases'' bridges the communication gap between advances made in the academic setting and their application in patient care. The journal is a valuable service for clinicians, specialists and physicians-in-training.