过表达 ESYT3 可通过激活 cGAS-STING 通路改善肺腺癌的放射免疫反应。

IF 9.4 1区 医学 Q1 HEMATOLOGY Experimental Hematology & Oncology Pub Date : 2024-08-05 DOI:10.1186/s40164-024-00546-y
Zan Luo, Ying Li, Bin Xu, Tenghua Yu, Mingming Luo, PeiMeng You, Xing Niu, Junyu Li
{"title":"过表达 ESYT3 可通过激活 cGAS-STING 通路改善肺腺癌的放射免疫反应。","authors":"Zan Luo, Ying Li, Bin Xu, Tenghua Yu, Mingming Luo, PeiMeng You, Xing Niu, Junyu Li","doi":"10.1186/s40164-024-00546-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Radiotherapy can modulate systemic antitumor immunity, while immune status in the tumor microenvironment also influences the efficacy of radiotherapy, but relevant molecular mechanisms are poorly understood in lung adenocarcinoma (LUAD).</p><p><strong>Methods: </strong>In this study, we innovatively proposed a radiotherapy response classification for LUAD, and discovered ESYT3 served as a tumor suppressor and radioimmune response sensitizer. ESYT3 expression was measured both in radioresistant and radiosensitive LUAD tissues and cells. The influence of ESYT3 on radiotherapy sensitivity and resistance was then investigated. Interaction between ESYT3 and STING was evaluated through multiple immunofluorescent staining and coimmunoprecipitation, and downstream molecules were further analyzed. In vivo models were constructed to assess the combination treatment efficacy of ESYT3 overexpression with radiotherapy.</p><p><strong>Results: </strong>We found that radioresistant subtype presented immunosuppressive state and activation of DNA damage repair pathways than radiosensitive subtype. ESYT3 expression was remarkably attenuated both in radioresistant LUAD tissues and cells. Clinically, low ESYT3 expression was linked with radioresistance. Overexpression of ESYT3 enabled to alleviate radioresistance, and sensitize LUAD cells to DNA damage induced by irradiation. Mechanically, ESYT3 directly interacted with STING, and activated cGAS-STING signaling, subsequently increasing the generation of type I IFNs as well as downstream chemokines CCL5 and CXCL10, thus improving radioimmune responses. The combination treatment of ESYT3 overexpression with radiotherapy had a synergistic anticancer effect in vitro and in vivo.</p><p><strong>Conclusions: </strong>In summary, low ESYT3 expression confers resistance to radiotherapy in LUAD, and its overexpression can improve radioimmune responses through activating cGAS-STING-dependent pathway, thus providing an alternative combination therapeutic strategy for LUAD patients.</p>","PeriodicalId":12180,"journal":{"name":"Experimental Hematology & Oncology","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11302107/pdf/","citationCount":"0","resultStr":"{\"title\":\"Overexpression of ESYT3 improves radioimmune responses through activating cGAS-STING pathway in lung adenocarcinoma.\",\"authors\":\"Zan Luo, Ying Li, Bin Xu, Tenghua Yu, Mingming Luo, PeiMeng You, Xing Niu, Junyu Li\",\"doi\":\"10.1186/s40164-024-00546-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Radiotherapy can modulate systemic antitumor immunity, while immune status in the tumor microenvironment also influences the efficacy of radiotherapy, but relevant molecular mechanisms are poorly understood in lung adenocarcinoma (LUAD).</p><p><strong>Methods: </strong>In this study, we innovatively proposed a radiotherapy response classification for LUAD, and discovered ESYT3 served as a tumor suppressor and radioimmune response sensitizer. ESYT3 expression was measured both in radioresistant and radiosensitive LUAD tissues and cells. The influence of ESYT3 on radiotherapy sensitivity and resistance was then investigated. Interaction between ESYT3 and STING was evaluated through multiple immunofluorescent staining and coimmunoprecipitation, and downstream molecules were further analyzed. In vivo models were constructed to assess the combination treatment efficacy of ESYT3 overexpression with radiotherapy.</p><p><strong>Results: </strong>We found that radioresistant subtype presented immunosuppressive state and activation of DNA damage repair pathways than radiosensitive subtype. ESYT3 expression was remarkably attenuated both in radioresistant LUAD tissues and cells. Clinically, low ESYT3 expression was linked with radioresistance. Overexpression of ESYT3 enabled to alleviate radioresistance, and sensitize LUAD cells to DNA damage induced by irradiation. Mechanically, ESYT3 directly interacted with STING, and activated cGAS-STING signaling, subsequently increasing the generation of type I IFNs as well as downstream chemokines CCL5 and CXCL10, thus improving radioimmune responses. The combination treatment of ESYT3 overexpression with radiotherapy had a synergistic anticancer effect in vitro and in vivo.</p><p><strong>Conclusions: </strong>In summary, low ESYT3 expression confers resistance to radiotherapy in LUAD, and its overexpression can improve radioimmune responses through activating cGAS-STING-dependent pathway, thus providing an alternative combination therapeutic strategy for LUAD patients.</p>\",\"PeriodicalId\":12180,\"journal\":{\"name\":\"Experimental Hematology & Oncology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11302107/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Hematology & Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s40164-024-00546-y\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Hematology & Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40164-024-00546-y","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:放疗可调节全身抗肿瘤免疫,而肿瘤微环境中的免疫状态也会影响放疗的疗效,但肺腺癌(LUAD)的相关分子机制尚不清楚:本研究创新性地提出了肺腺癌放疗反应分级,发现ESYT3是肿瘤抑制因子和放射免疫反应敏感因子。ESYT3在抗放射和对放射敏感的LUAD组织和细胞中均有表达。随后研究了ESYT3对放疗敏感性和耐药性的影响。通过多重免疫荧光染色和共沉淀评估了ESYT3和STING之间的相互作用,并进一步分析了下游分子。我们构建了体内模型,以评估ESYT3过表达与放疗的联合治疗效果:结果:与放疗敏感亚型相比,耐放疗亚型呈现免疫抑制状态,DNA损伤修复通路被激活。ESYT3 在耐放疗 LUAD 组织和细胞中的表达均显著降低。在临床上,ESYT3的低表达与放射抗性有关。ESYT3的过表达能缓解放射抗性,并使LUAD细胞对辐照诱导的DNA损伤敏感。在机制上,ESYT3与STING直接相互作用,激活了cGAS-STING信号转导,随后增加了I型IFNs以及下游趋化因子CCL5和CXCL10的生成,从而改善了放射免疫反应。ESYT3过表达与放疗联合治疗在体外和体内具有协同抗癌作用:综上所述,ESYT3的低表达会导致LUAD患者对放疗产生耐药性,而ESYT3的过表达可通过激活cGAS-STING依赖性通路改善放射免疫反应,从而为LUAD患者提供了另一种联合治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Overexpression of ESYT3 improves radioimmune responses through activating cGAS-STING pathway in lung adenocarcinoma.

Background: Radiotherapy can modulate systemic antitumor immunity, while immune status in the tumor microenvironment also influences the efficacy of radiotherapy, but relevant molecular mechanisms are poorly understood in lung adenocarcinoma (LUAD).

Methods: In this study, we innovatively proposed a radiotherapy response classification for LUAD, and discovered ESYT3 served as a tumor suppressor and radioimmune response sensitizer. ESYT3 expression was measured both in radioresistant and radiosensitive LUAD tissues and cells. The influence of ESYT3 on radiotherapy sensitivity and resistance was then investigated. Interaction between ESYT3 and STING was evaluated through multiple immunofluorescent staining and coimmunoprecipitation, and downstream molecules were further analyzed. In vivo models were constructed to assess the combination treatment efficacy of ESYT3 overexpression with radiotherapy.

Results: We found that radioresistant subtype presented immunosuppressive state and activation of DNA damage repair pathways than radiosensitive subtype. ESYT3 expression was remarkably attenuated both in radioresistant LUAD tissues and cells. Clinically, low ESYT3 expression was linked with radioresistance. Overexpression of ESYT3 enabled to alleviate radioresistance, and sensitize LUAD cells to DNA damage induced by irradiation. Mechanically, ESYT3 directly interacted with STING, and activated cGAS-STING signaling, subsequently increasing the generation of type I IFNs as well as downstream chemokines CCL5 and CXCL10, thus improving radioimmune responses. The combination treatment of ESYT3 overexpression with radiotherapy had a synergistic anticancer effect in vitro and in vivo.

Conclusions: In summary, low ESYT3 expression confers resistance to radiotherapy in LUAD, and its overexpression can improve radioimmune responses through activating cGAS-STING-dependent pathway, thus providing an alternative combination therapeutic strategy for LUAD patients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.60
自引率
7.30%
发文量
97
审稿时长
6 weeks
期刊介绍: Experimental Hematology & Oncology is an open access journal that encompasses all aspects of hematology and oncology with an emphasis on preclinical, basic, patient-oriented and translational research. The journal acts as an international platform for sharing laboratory findings in these areas and makes a deliberate effort to publish clinical trials with 'negative' results and basic science studies with provocative findings. Experimental Hematology & Oncology publishes original work, hypothesis, commentaries and timely reviews. With open access and rapid turnaround time from submission to publication, the journal strives to be a hub for disseminating new knowledge and discussing controversial topics for both basic scientists and busy clinicians in the closely related fields of hematology and oncology.
期刊最新文献
Correction: Efficacy of NKG2D CAR-T cells with IL-15/IL-15Rα signaling for treating Epstein-Barr virus-associated lymphoproliferative disorder Identifying ADGRG1 as a specific marker for tumor-reactive T cells in acute myeloid leukemia. Ubiquitin modification in the regulation of tumor immunotherapy resistance mechanisms and potential therapeutic targets. Polyunsaturated fatty acids promote M2-like TAM deposition via dampening RhoA-YAP1 signaling in the ovarian cancer microenvironment. Genetic factors, risk prediction and AI application of thrombotic diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1