在对后天性脑损伤患者进行步行评估时,利用向后定向力估算最高推进能力。

IF 5.2 2区 医学 Q1 ENGINEERING, BIOMEDICAL Journal of NeuroEngineering and Rehabilitation Pub Date : 2024-08-05 DOI:10.1186/s12984-024-01428-4
Kelli LaCroix, Lauren Horelka, Clif Hung, David A Brown
{"title":"在对后天性脑损伤患者进行步行评估时,利用向后定向力估算最高推进能力。","authors":"Kelli LaCroix, Lauren Horelka, Clif Hung, David A Brown","doi":"10.1186/s12984-024-01428-4","DOIUrl":null,"url":null,"abstract":"<p><p>There are over 5.3 million Americans who face acquired brain injury (ABI)-related disability as well as almost 800,000 who suffer from stroke each year. To improve mobility and quality of life, rehabilitation professionals often focus on walking recovery soon after hospital discharge for ABI. Reduced propulsion capacity (force output of the lower limbs to counteract ground reaction forces) negatively impacts walking ability and complicates recovery during rehabilitation for brain injured people. We describe a method, using backward-directed resistance (BDR) in a robotic-based treadmill device, to allow measurement of maximum walking propulsion force (MWPF) that is not otherwise possible during overground walking assessment. Our objective was to test the construct validity of a maximum walking propulsion force (MWPF) measure that reflects a person's propulsive strength against applied BDR, while walking on a robotic treadmill-based device for participants with acquired brain injury (ABI). Our study enrolled 14 participants with ABI at an in inpatient rehabilitation in Galveston, TX from 8/1/21 - 4/31/22. The range of weight-adjusted MWPF was 2.6-27.1% body weight (%BW), mean 16.5 ± 8.4%BW, reflecting a wide range of propulsive force capability. The strongest correlation with overground tests was between the 6-minute walk test (6-MWT) distance and the MWPF values (r = 0.83, p < 0.001) with moderate correlations between the 10-meter walk tests at comfortable (CWS) and fast speeds (FWS). The Five Times Sit-to-Stand (used as a standard clinical measure of functional lower extremity strength) and MWPF tests were poorly correlated (r = 0.26, p = 0.4). Forward model selection included 6-MWT distance, age, and overground CWS as significant partial predictors of MWPF. We conclude that this novel MWPF measure is a valid representation of maximum propulsive force effort during walking for people post-ABI. Additional research could help determine the impact of interventions designed to increase propulsive force generation during rehabilitation training to improve overground walking performance.</p>","PeriodicalId":16384,"journal":{"name":"Journal of NeuroEngineering and Rehabilitation","volume":null,"pages":null},"PeriodicalIF":5.2000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11299352/pdf/","citationCount":"0","resultStr":"{\"title\":\"Estimating highest capacity propulsion performance using backward-directed force during walking evaluation for individuals with acquired brain injury.\",\"authors\":\"Kelli LaCroix, Lauren Horelka, Clif Hung, David A Brown\",\"doi\":\"10.1186/s12984-024-01428-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>There are over 5.3 million Americans who face acquired brain injury (ABI)-related disability as well as almost 800,000 who suffer from stroke each year. To improve mobility and quality of life, rehabilitation professionals often focus on walking recovery soon after hospital discharge for ABI. Reduced propulsion capacity (force output of the lower limbs to counteract ground reaction forces) negatively impacts walking ability and complicates recovery during rehabilitation for brain injured people. We describe a method, using backward-directed resistance (BDR) in a robotic-based treadmill device, to allow measurement of maximum walking propulsion force (MWPF) that is not otherwise possible during overground walking assessment. Our objective was to test the construct validity of a maximum walking propulsion force (MWPF) measure that reflects a person's propulsive strength against applied BDR, while walking on a robotic treadmill-based device for participants with acquired brain injury (ABI). Our study enrolled 14 participants with ABI at an in inpatient rehabilitation in Galveston, TX from 8/1/21 - 4/31/22. The range of weight-adjusted MWPF was 2.6-27.1% body weight (%BW), mean 16.5 ± 8.4%BW, reflecting a wide range of propulsive force capability. The strongest correlation with overground tests was between the 6-minute walk test (6-MWT) distance and the MWPF values (r = 0.83, p < 0.001) with moderate correlations between the 10-meter walk tests at comfortable (CWS) and fast speeds (FWS). The Five Times Sit-to-Stand (used as a standard clinical measure of functional lower extremity strength) and MWPF tests were poorly correlated (r = 0.26, p = 0.4). Forward model selection included 6-MWT distance, age, and overground CWS as significant partial predictors of MWPF. We conclude that this novel MWPF measure is a valid representation of maximum propulsive force effort during walking for people post-ABI. Additional research could help determine the impact of interventions designed to increase propulsive force generation during rehabilitation training to improve overground walking performance.</p>\",\"PeriodicalId\":16384,\"journal\":{\"name\":\"Journal of NeuroEngineering and Rehabilitation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11299352/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of NeuroEngineering and Rehabilitation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s12984-024-01428-4\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of NeuroEngineering and Rehabilitation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12984-024-01428-4","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

每年有超过 530 万美国人面临与后天性脑损伤(ABI)相关的残疾,还有近 80 万人罹患中风。为了提高行动能力和生活质量,康复专业人员通常会在后天性脑损伤患者出院后不久重点关注步行恢复。推进能力(下肢抵消地面反作用力的力量输出)的降低会对行走能力产生负面影响,并使脑损伤患者在康复期间的恢复变得更加复杂。我们介绍了一种在基于机器人的跑步机设备中使用后向阻力(BDR)来测量最大行走推进力(MWPF)的方法,这种方法在地面行走评估中是不可能实现的。我们的目标是测试最大行走推进力(MWPF)测量的构造有效性,该测量反映了后天性脑损伤(ABI)患者在基于机器人跑步机的设备上行走时,人在施加 BDR 时的推进力。我们的研究从 21 年 1 月 8 日至 22 年 4 月 31 日在德克萨斯州加尔维斯顿的一家住院康复中心招募了 14 名后天性脑损伤患者。体重调整后的 MWPF 范围为 2.6-27.1% 体重(%BW),平均值为 16.5 ± 8.4%BW,反映了广泛的推进力能力。与地面测试相关性最强的是 6 分钟步行测试(6-MWT)距离和 MWPF 值(r = 0.83,p<0.05)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimating highest capacity propulsion performance using backward-directed force during walking evaluation for individuals with acquired brain injury.

There are over 5.3 million Americans who face acquired brain injury (ABI)-related disability as well as almost 800,000 who suffer from stroke each year. To improve mobility and quality of life, rehabilitation professionals often focus on walking recovery soon after hospital discharge for ABI. Reduced propulsion capacity (force output of the lower limbs to counteract ground reaction forces) negatively impacts walking ability and complicates recovery during rehabilitation for brain injured people. We describe a method, using backward-directed resistance (BDR) in a robotic-based treadmill device, to allow measurement of maximum walking propulsion force (MWPF) that is not otherwise possible during overground walking assessment. Our objective was to test the construct validity of a maximum walking propulsion force (MWPF) measure that reflects a person's propulsive strength against applied BDR, while walking on a robotic treadmill-based device for participants with acquired brain injury (ABI). Our study enrolled 14 participants with ABI at an in inpatient rehabilitation in Galveston, TX from 8/1/21 - 4/31/22. The range of weight-adjusted MWPF was 2.6-27.1% body weight (%BW), mean 16.5 ± 8.4%BW, reflecting a wide range of propulsive force capability. The strongest correlation with overground tests was between the 6-minute walk test (6-MWT) distance and the MWPF values (r = 0.83, p < 0.001) with moderate correlations between the 10-meter walk tests at comfortable (CWS) and fast speeds (FWS). The Five Times Sit-to-Stand (used as a standard clinical measure of functional lower extremity strength) and MWPF tests were poorly correlated (r = 0.26, p = 0.4). Forward model selection included 6-MWT distance, age, and overground CWS as significant partial predictors of MWPF. We conclude that this novel MWPF measure is a valid representation of maximum propulsive force effort during walking for people post-ABI. Additional research could help determine the impact of interventions designed to increase propulsive force generation during rehabilitation training to improve overground walking performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of NeuroEngineering and Rehabilitation
Journal of NeuroEngineering and Rehabilitation 工程技术-工程:生物医学
CiteScore
9.60
自引率
3.90%
发文量
122
审稿时长
24 months
期刊介绍: Journal of NeuroEngineering and Rehabilitation considers manuscripts on all aspects of research that result from cross-fertilization of the fields of neuroscience, biomedical engineering, and physical medicine & rehabilitation.
期刊最新文献
Comparison of synergy extrapolation and static optimization for estimating multiple unmeasured muscle activations during walking. Immersive virtual reality for learning exoskeleton-like virtual walking: a feasibility study. Instrumented assessment of lower and upper motor neuron signs in amyotrophic lateral sclerosis using robotic manipulation: an explorative study. Rest the brain to learn new gait patterns after stroke. Effects of virtual reality rehabilitation after spinal cord injury: a systematic review and meta-analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1