Filomena Sarra , Daniela Paocic , Andrea Zöchling , András Gregor , Arturo Auñon-Lopez , Marc Pignitter , Kalina Duszka
{"title":"肠道微生物群、膳食牛磺酸和纤维改变了热量限制小鼠脂肪组织中的牛磺酸平衡,从而影响了脂肪的减少。","authors":"Filomena Sarra , Daniela Paocic , Andrea Zöchling , András Gregor , Arturo Auñon-Lopez , Marc Pignitter , Kalina Duszka","doi":"10.1016/j.jnutbio.2024.109720","DOIUrl":null,"url":null,"abstract":"<div><p>Previously, we demonstrated that caloric restriction (CR) stimulates the synthesis, conjugation, secretion, and deconjugation of taurine and bile acids in the intestine, as well as their reuptake. Given taurine's potent antiobesogenic properties, this study aimed to assess whether the CR-induced shift in taurine homeostasis contributes to adipose tissue loss. To verify that, male C57Bl/6 mice were subjected to 20% CR or <em>ad libitum</em> feeding, with variations in cage bedding and gut microbiota conditions. Additional groups received taurine supplementation or were fed a low-taurine diet (LTD). The results showed that in CR animals, taurine derived from the intestine was preferentially trafficked to epididymal white adipose tissue (eWAT) over other tested organs. Besides increased levels of taurine transporter TauT, gene expression of Cysteine dioxygenase (<em>Cdo</em>) involved in taurine synthesis was upregulated in CR eWAT. Taurine concentration in adipocytes was inversely correlated with fat pad weight of CR mice. Different types of cage bedding did not impact eWAT taurine levels; however, the lack of bedding and consumption of a diet high in soluble fiber did. Depleting gut microbiota with antibiotics or inhibiting bile salt hydrolase (BSH) activity reduced WAT taurine concentration in CR mice. Taurine supplementation increased taurine levels in WAT and brown adipose tissue (BAT), promoting fat loss in CR animals. LTD consumption blunted WAT loss in CR animals, with negligible impact on BAT. This study provides multiple insights into taurine's role in CR-triggered fat loss and describes a novel communication path between the liver, gut, microbiota, and WAT, with taurine acting as a messenger.</p></div>","PeriodicalId":16618,"journal":{"name":"Journal of Nutritional Biochemistry","volume":"134 ","pages":"Article 109720"},"PeriodicalIF":4.8000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0955286324001529/pdfft?md5=f943ae50e0aa9ee4d050d5e780fc9c67&pid=1-s2.0-S0955286324001529-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Gut microbiota, dietary taurine, and fiber shift taurine homeostasis in adipose tissue of calorie-restricted mice to impact fat loss\",\"authors\":\"Filomena Sarra , Daniela Paocic , Andrea Zöchling , András Gregor , Arturo Auñon-Lopez , Marc Pignitter , Kalina Duszka\",\"doi\":\"10.1016/j.jnutbio.2024.109720\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Previously, we demonstrated that caloric restriction (CR) stimulates the synthesis, conjugation, secretion, and deconjugation of taurine and bile acids in the intestine, as well as their reuptake. Given taurine's potent antiobesogenic properties, this study aimed to assess whether the CR-induced shift in taurine homeostasis contributes to adipose tissue loss. To verify that, male C57Bl/6 mice were subjected to 20% CR or <em>ad libitum</em> feeding, with variations in cage bedding and gut microbiota conditions. Additional groups received taurine supplementation or were fed a low-taurine diet (LTD). The results showed that in CR animals, taurine derived from the intestine was preferentially trafficked to epididymal white adipose tissue (eWAT) over other tested organs. Besides increased levels of taurine transporter TauT, gene expression of Cysteine dioxygenase (<em>Cdo</em>) involved in taurine synthesis was upregulated in CR eWAT. Taurine concentration in adipocytes was inversely correlated with fat pad weight of CR mice. Different types of cage bedding did not impact eWAT taurine levels; however, the lack of bedding and consumption of a diet high in soluble fiber did. Depleting gut microbiota with antibiotics or inhibiting bile salt hydrolase (BSH) activity reduced WAT taurine concentration in CR mice. Taurine supplementation increased taurine levels in WAT and brown adipose tissue (BAT), promoting fat loss in CR animals. LTD consumption blunted WAT loss in CR animals, with negligible impact on BAT. This study provides multiple insights into taurine's role in CR-triggered fat loss and describes a novel communication path between the liver, gut, microbiota, and WAT, with taurine acting as a messenger.</p></div>\",\"PeriodicalId\":16618,\"journal\":{\"name\":\"Journal of Nutritional Biochemistry\",\"volume\":\"134 \",\"pages\":\"Article 109720\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0955286324001529/pdfft?md5=f943ae50e0aa9ee4d050d5e780fc9c67&pid=1-s2.0-S0955286324001529-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nutritional Biochemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0955286324001529\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nutritional Biochemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955286324001529","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Gut microbiota, dietary taurine, and fiber shift taurine homeostasis in adipose tissue of calorie-restricted mice to impact fat loss
Previously, we demonstrated that caloric restriction (CR) stimulates the synthesis, conjugation, secretion, and deconjugation of taurine and bile acids in the intestine, as well as their reuptake. Given taurine's potent antiobesogenic properties, this study aimed to assess whether the CR-induced shift in taurine homeostasis contributes to adipose tissue loss. To verify that, male C57Bl/6 mice were subjected to 20% CR or ad libitum feeding, with variations in cage bedding and gut microbiota conditions. Additional groups received taurine supplementation or were fed a low-taurine diet (LTD). The results showed that in CR animals, taurine derived from the intestine was preferentially trafficked to epididymal white adipose tissue (eWAT) over other tested organs. Besides increased levels of taurine transporter TauT, gene expression of Cysteine dioxygenase (Cdo) involved in taurine synthesis was upregulated in CR eWAT. Taurine concentration in adipocytes was inversely correlated with fat pad weight of CR mice. Different types of cage bedding did not impact eWAT taurine levels; however, the lack of bedding and consumption of a diet high in soluble fiber did. Depleting gut microbiota with antibiotics or inhibiting bile salt hydrolase (BSH) activity reduced WAT taurine concentration in CR mice. Taurine supplementation increased taurine levels in WAT and brown adipose tissue (BAT), promoting fat loss in CR animals. LTD consumption blunted WAT loss in CR animals, with negligible impact on BAT. This study provides multiple insights into taurine's role in CR-triggered fat loss and describes a novel communication path between the liver, gut, microbiota, and WAT, with taurine acting as a messenger.
期刊介绍:
Devoted to advancements in nutritional sciences, The Journal of Nutritional Biochemistry presents experimental nutrition research as it relates to: biochemistry, molecular biology, toxicology, or physiology.
Rigorous reviews by an international editorial board of distinguished scientists ensure publication of the most current and key research being conducted in nutrition at the cellular, animal and human level. In addition to its monthly features of critical reviews and research articles, The Journal of Nutritional Biochemistry also periodically publishes emerging issues, experimental methods, and other types of articles.