7 T 下骨骼肌组织质子密度脂肪分数定量的参数优化。

IF 2 4区 医学 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Magnetic Resonance Materials in Physics, Biology and Medicine Pub Date : 2024-12-01 Epub Date: 2024-08-06 DOI:10.1007/s10334-024-01195-2
Katharina Tkotz, Paula Zeiger, Jannis Hanspach, Claudius S Mathy, Frederik B Laun, Michael Uder, Armin M Nagel, Lena V Gast
{"title":"7 T 下骨骼肌组织质子密度脂肪分数定量的参数优化。","authors":"Katharina Tkotz, Paula Zeiger, Jannis Hanspach, Claudius S Mathy, Frederik B Laun, Michael Uder, Armin M Nagel, Lena V Gast","doi":"10.1007/s10334-024-01195-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To establish an image acquisition and post-processing workflow for the determination of the proton density fat fraction (PDFF) in calf muscle tissue at 7 T.</p><p><strong>Materials and methods: </strong>Echo times (TEs) of the applied vendor-provided multi-echo gradient echo sequence were optimized based on simulations of the effective number of signal averages (NSA*). The resulting parameters were validated by measurements in phantom and in healthy calf muscle tissue (n = 12). Additionally, methods to reduce phase errors arising at 7 T were evaluated. Finally, PDFF values measured at 7 T in calf muscle tissue of healthy subjects (n = 9) and patients with fatty replacement of muscle tissue (n = 3) were compared to 3 T results.</p><p><strong>Results: </strong>Simulations, phantom and in vivo measurements showed the importance of using optimized TEs for the fat-water separation at 7 T. Fat-water swaps could be mitigated using a phase demodulation with an additional B<sub>0</sub> map, or by shifting the TEs to longer values. Muscular PDFF values measured at 7 T were comparable to measurements at 3 T in both healthy subjects and patients with increased fatty replacement.</p><p><strong>Conclusion: </strong>PDFF determination in calf muscle tissue is feasible at 7 T using a chemical shift-based approach with optimized acquisition and post-processing parameters.</p>","PeriodicalId":18067,"journal":{"name":"Magnetic Resonance Materials in Physics, Biology and Medicine","volume":" ","pages":"969-981"},"PeriodicalIF":2.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11582128/pdf/","citationCount":"0","resultStr":"{\"title\":\"Parameter optimization for proton density fat fraction quantification in skeletal muscle tissue at 7 T.\",\"authors\":\"Katharina Tkotz, Paula Zeiger, Jannis Hanspach, Claudius S Mathy, Frederik B Laun, Michael Uder, Armin M Nagel, Lena V Gast\",\"doi\":\"10.1007/s10334-024-01195-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>To establish an image acquisition and post-processing workflow for the determination of the proton density fat fraction (PDFF) in calf muscle tissue at 7 T.</p><p><strong>Materials and methods: </strong>Echo times (TEs) of the applied vendor-provided multi-echo gradient echo sequence were optimized based on simulations of the effective number of signal averages (NSA*). The resulting parameters were validated by measurements in phantom and in healthy calf muscle tissue (n = 12). Additionally, methods to reduce phase errors arising at 7 T were evaluated. Finally, PDFF values measured at 7 T in calf muscle tissue of healthy subjects (n = 9) and patients with fatty replacement of muscle tissue (n = 3) were compared to 3 T results.</p><p><strong>Results: </strong>Simulations, phantom and in vivo measurements showed the importance of using optimized TEs for the fat-water separation at 7 T. Fat-water swaps could be mitigated using a phase demodulation with an additional B<sub>0</sub> map, or by shifting the TEs to longer values. Muscular PDFF values measured at 7 T were comparable to measurements at 3 T in both healthy subjects and patients with increased fatty replacement.</p><p><strong>Conclusion: </strong>PDFF determination in calf muscle tissue is feasible at 7 T using a chemical shift-based approach with optimized acquisition and post-processing parameters.</p>\",\"PeriodicalId\":18067,\"journal\":{\"name\":\"Magnetic Resonance Materials in Physics, Biology and Medicine\",\"volume\":\" \",\"pages\":\"969-981\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11582128/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetic Resonance Materials in Physics, Biology and Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10334-024-01195-2\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance Materials in Physics, Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10334-024-01195-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

目的建立在 7 T 下测定小腿肌肉组织质子密度脂肪分数 (PDFF) 的图像采集和后处理工作流程:根据对有效信号平均值(NSA*)的模拟,优化了供应商提供的多回波梯度回波序列的回波时间(TE)。在模型和健康小腿肌肉组织(n = 12)中的测量结果验证了优化后的参数。此外,还评估了减少 7 T 时产生的相位误差的方法。最后,将在 7 T 下测量的健康受试者(9 人)和肌肉组织脂肪替代患者(3 人)小腿肌肉组织的 PDFF 值与 3 T 结果进行了比较:模拟、模型和体内测量结果表明,在 7 T 下使用优化的 TE 对于脂肪-水分离非常重要。在 7 T 下测量的肌肉 PDFF 值与在 3 T 下测量的值相当,无论是健康人还是脂肪替代增加的患者:结论:采用基于化学位移的方法,并优化采集和后处理参数,在 7 T 下测定小腿肌肉组织的 PDFF 是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Parameter optimization for proton density fat fraction quantification in skeletal muscle tissue at 7 T.

Objective: To establish an image acquisition and post-processing workflow for the determination of the proton density fat fraction (PDFF) in calf muscle tissue at 7 T.

Materials and methods: Echo times (TEs) of the applied vendor-provided multi-echo gradient echo sequence were optimized based on simulations of the effective number of signal averages (NSA*). The resulting parameters were validated by measurements in phantom and in healthy calf muscle tissue (n = 12). Additionally, methods to reduce phase errors arising at 7 T were evaluated. Finally, PDFF values measured at 7 T in calf muscle tissue of healthy subjects (n = 9) and patients with fatty replacement of muscle tissue (n = 3) were compared to 3 T results.

Results: Simulations, phantom and in vivo measurements showed the importance of using optimized TEs for the fat-water separation at 7 T. Fat-water swaps could be mitigated using a phase demodulation with an additional B0 map, or by shifting the TEs to longer values. Muscular PDFF values measured at 7 T were comparable to measurements at 3 T in both healthy subjects and patients with increased fatty replacement.

Conclusion: PDFF determination in calf muscle tissue is feasible at 7 T using a chemical shift-based approach with optimized acquisition and post-processing parameters.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.60
自引率
0.00%
发文量
58
审稿时长
>12 weeks
期刊介绍: MAGMA is a multidisciplinary international journal devoted to the publication of articles on all aspects of magnetic resonance techniques and their applications in medicine and biology. MAGMA currently publishes research papers, reviews, letters to the editor, and commentaries, six times a year. The subject areas covered by MAGMA include: advances in materials, hardware and software in magnetic resonance technology, new developments and results in research and practical applications of magnetic resonance imaging and spectroscopy related to biology and medicine, study of animal models and intact cells using magnetic resonance, reports of clinical trials on humans and clinical validation of magnetic resonance protocols.
期刊最新文献
Development of a cost-effective 3D-printed MRI phantom for enhanced teaching of system performance and image quality concepts. FeCl3 and GdCl3 solutions as superfast relaxation modifiers for agarose gel: a quantitative analysis. Correction to: Motion robust coronary MR angiography using zigzag centric ky-kz trajectory and high-resolution deep learning reconstruction. Quantitative MRI methods for the assessment of structure, composition, and function of musculoskeletal tissues in basic research and preclinical applications. PyFaceWipe: a new defacing tool for almost any MRI contrast.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1